首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   330篇
  免费   6篇
  国内免费   2篇
化学   183篇
晶体学   1篇
力学   24篇
数学   85篇
物理学   45篇
  2024年   1篇
  2023年   2篇
  2022年   12篇
  2021年   26篇
  2020年   9篇
  2019年   9篇
  2018年   8篇
  2017年   7篇
  2016年   7篇
  2015年   8篇
  2014年   9篇
  2013年   18篇
  2012年   24篇
  2011年   27篇
  2010年   17篇
  2009年   11篇
  2008年   24篇
  2007年   12篇
  2006年   12篇
  2005年   25篇
  2004年   8篇
  2003年   14篇
  2002年   8篇
  2001年   7篇
  2000年   3篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   4篇
  1995年   3篇
  1994年   5篇
  1992年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1985年   1篇
  1984年   3篇
  1983年   1篇
  1976年   1篇
排序方式: 共有338条查询结果,搜索用时 15 毫秒
101.
A non‐equilibrium Green’s function technique combined with density functional theory is used to study the spin‐dependent electronic band structure and transport properties of zigzag silicene nanoribbons (ZSiNRs) doped with aluminum (Al) or phosphorus (P) atoms. The presence of a single Al or P atom induces quasibound states in ZSiNRs that can be observed as new dips in the electron conductance. The Al atom acts as an acceptor whereas the P atom acts as a donor if it is placed at the center of the ribbon. This behavior is reversed if the dopant is placed on the edges. Accordingly, an acceptor–donor transition is observed in ZSiNRs upon changing the dopant’s position. Similar results are obtained if two silicon atoms are replaced by two impurities (Al or P atoms) but the conductance is generally modified due to the impurity–impurity interaction. If the doping breaks the twofold rotational symmetry about the central line, the transport becomes spin‐dependent.  相似文献   
102.
In structural engineering, soil–structure interaction (SSI) is an important phenomenon that has to be taken into account. This paper presents a 3D non-linear interface element able to compute SSI based on the “macro-element” concept. The particularity of the macro-element lies in the fact that the movement of the foundation is entirely described by a system of generalised variables (forces and displacements) defined at the foundation centre. The non-linear behaviour of the soil and the uplift mechanism of the foundation are reproduced using the plasticity theory. The failure surface is defined using an adequate overturning mechanism. Coupling of the different mechanisms is straight forward following the theory of multi-mechanisms. The macro-element is able to simulate the 3D behaviour of a rigid shallow foundation of circular, rectangular or strip shape, submitted to cyclic loadings. It is implemented into FEDEASLab, a finite element MATLAB toolbox. Comparisons with experimental results under cyclic loadings show the performance of the approach.  相似文献   
103.
104.
We consider elastic dipoles in several two-dimensional geometries. Using Cauchy integral techniques and the image method, the state of elastic equilibrium under different boundary conditions can be determined. The results are used to find the ground state of systems of anisotropic dipoles via the simulated annealing method. Only in the case of fixed boundaries the ordering depends on the boundary condition.  相似文献   
105.
In this paper, we address some issues on the interface of buffer design and cyclic scheduling decisions in a multi-product deterministic flow line. We demonstrate the importance of the above interface for the throughput performance of the flow line. In particular, we point out that the use of sequence-independent information, such as workload distribution and variability in processing times among stations, is not adequate to decide the optimal buffer configuration of the flow line. We formulate the buffer design problem for a fixed sequence of jobs as a general resource allocation problem, and suggest two effective heuristics for its solution. For the simultaneous buffer design and cyclic scheduling problem, we suggest an iterative scheme that builds on the effectiveness of the above heuristics. One of the side results of our extensive computational studies on this problem is that the general guidelines of buffer design in single-product flow lines with stochastic processing times are not directly transferable to the multiproduct deterministic flow line environment.  相似文献   
106.
107.
This work focuses on the study of nanocomposite organic/inorganic materials, particularly, those made by the sol-gel method, by using time-resolved fluorescence techniques. A model of stretched exponentials is presented and used to fit fluorescence (luminescence) decay profiles for fluorescence quenching reactions obtained by energy-transfer or by diffusion or both. Various types of information on both bulk and thin-film nanocomposite materials can be obtained by such analysis: for example, determination of the percolation threshold for the organic subphase, localization or mobility of incorporated molecular species, and extraction of structural parameters.  相似文献   
108.
Efforts to delineate the interactions of Al(III), a known metallotoxin, with low molecular mass physiological substrates involved in cellular processes led to the investigation of the structural speciation of the binary Al(III)–quinic acid system. Reaction of Al(NO3)3 · 9H2O with d-(−)-quinic acid at a specific pH (4.0) afforded a colorless crystalline material K[Al(C7H11O6)3] · (OH) · 4H2O (1). Complex 1 was characterized by elemental analysis, FT-IR, DSC–TGA, 13C-MAS NMR, solution 1H and 13C NMR, and X-ray crystallography. The structure of 1 reveals a mononuclear octahedral complex of Al(III) with three singly ionized quinate ligands bound to it. The three ligand alcoholic side chains do not participate in metal binding and dangle away from the complex. The concurrent study of the aqueous speciation of the binary Al(III)–quinic acid system projects a number of species complementing the synthetic studies on the binary system Al(III)–quinic acid. The structural and spectroscopic data of 1 in the solid state and in solution emphasize its physicochemical properties emanating from the projections of the aqueous structural speciation scheme of the Al(III)–quinic acid system. The employed pH-specific synthetic work (a) exemplifies essential structural and chemical attributes of soluble aqueous species, arising from biologically relevant interactions of Al(III) with natural α-hydroxycarboxylate substrates, and (b) provides a potential linkage to the chemical reactivity of Al(III) toward O-containing molecular targets influencing physiological processes and/or toxicity events.  相似文献   
109.
Arapitsas P  Turner C 《Talanta》2008,74(5):1218-1223
The aim of this work was to develop a fast method for extraction and analysis of anthocyanins in red cabbage. Pressurized hot water containing 5% of ethanol was used as an extremely efficient extraction solvent. HPLC/DAD with a monolithic column was used to accomplish a fast analysis—24 anthocyanin peaks within 18 min. Statistical design was used to optimize the studied extraction parameters: temperature (80–120 °C); sample amount (1–3 g); extraction time (6–11 min); concentration of formic acid in the extraction solvent (0–5 vol.%). The best extraction conditions for a majority of the anthocyanin peaks were 2.5 g of sample, 99 °C (at 50 bar), 7 min of extraction and a solvent composition of water/ethanol/formic acid (94/5/1, v/v/v).  相似文献   
110.
The factors that influence the reactivity of C5' radicals in purine moieties under aerobic conditions are unknown not only in DNA, but also in simple nucleosides. 5',8-Cyclopurine lesions are the result of a rapid C5' radical attack to the purine moieties before the reaction with oxygen. These well-known lesions among the DNA modifications were suppressed by the presence of molecular oxygen in solution. Here we elucidate the chemistry of three purine-substituted C5' radicals (i.e., 2'-deoxyadenosin-5'-yl, 2'-deoxyinosin-5'-yl, and 2'-deoxyguanosin-5'-yl) under oxidative conditions using gamma-radiolysis coupled with product studies. 2'-Deoxyadenosin-5'-yl and 2'-deoxyinosin-5'-yl radicals were selectively generated by the reaction of hydrated electrons (e(aq)(-)) with 8-bromo-2'-deoxyadenosine and 8-bromo-2'-deoxyinosine followed by a rapid radical translocation from the C8 to the C5' position. Trapping these two C5' radicals with Fe(CN)6(3-) gave corresponding hydrated 5'-aldehydes in good yields that were isolated and fully characterized. When an oxygen concentration in the range of 13-266 microM (typical oxygenated tissues) is used, the hydrated 5'-aldehyde is accompanied by the 5',8-cyclopurine nucleoside. The formation of 5',8-cyclopurines is relevant in all experiments, and the yields increased with decreasing O2 concentration. The reaction of HO(*) radicals with 2'-deoxyadenosine and 2'-deoxyguanosine under normoxic conditions was also investigated. The minor path of C5' radicals formation was found to be ca. 10% by quantifying the hydrated 5'-aldehyde in both experiments. Rate constants for the reactions of the 2'-deoxyadenosin-5'-yl with cysteine and glutathione in water were determined by pulse radiolysis to be (2.1 +/- 0.5) x 10(7) and (4.9 +/- 0.6) x 10(7) M(-1) s(-1) at 22 degrees C, respectively.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号