首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8209篇
  免费   1310篇
  国内免费   746篇
化学   5692篇
晶体学   132篇
力学   501篇
综合类   72篇
数学   796篇
物理学   3072篇
  2024年   67篇
  2023年   191篇
  2022年   318篇
  2021年   317篇
  2020年   381篇
  2019年   350篇
  2018年   304篇
  2017年   254篇
  2016年   412篇
  2015年   401篇
  2014年   534篇
  2013年   606篇
  2012年   672篇
  2011年   693篇
  2010年   457篇
  2009年   374篇
  2008年   498篇
  2007年   425篇
  2006年   379篇
  2005年   324篇
  2004年   214篇
  2003年   218篇
  2002年   166篇
  2001年   124篇
  2000年   154篇
  1999年   151篇
  1998年   129篇
  1997年   132篇
  1996年   151篇
  1995年   110篇
  1994年   108篇
  1993年   89篇
  1992年   78篇
  1991年   69篇
  1990年   74篇
  1989年   47篇
  1988年   49篇
  1987年   38篇
  1986年   38篇
  1985年   26篇
  1984年   22篇
  1983年   15篇
  1982年   19篇
  1981年   15篇
  1980年   11篇
  1979年   8篇
  1975年   5篇
  1974年   5篇
  1970年   12篇
  1937年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
1.
Since the concept of aggregation-induced emission (AIE) was proposed by Benzhong Tang's research group in 2001, the exploration of the mechanism of AIE and the development of new high-performance AIE materials have been the focus and goal of this field. On the basis of a large number of experiment results, AIE mechanism has been well explained by lots of works, such as restricted intramolecular motion (RIM), J-aggregate et al. As tetraphenylethlene (TPE) molecules are stacked, the rotation of the benzene ring rotor is blocked, and the energy attenuation is released in the form of radiation, showing the AIE effect. In order to further explore the AIE effect of TPE, we performed electronic structure, spectrum simulation, and AIE mechanism calculations of the anthryl-tetraphenylethene (TPE-an) monomer and dimer in the gas phase, tetrahydrofuran (THF), and aqueous solutions at the B3LYP/6-31G** level. The calculation results show that TPE-an molecule is in a propeller-like configuration, and its fluorescence intensity is weak; compared with the monomer, the fluorescence intensity of the dimer increases by 87% in aqueous solution; the fluorescence intensity in the gas phase, THF solution, and aqueous solution gradually enhances with the increase of the degree of aggregation, which are consistent with the experimental results. The enhancement of fluorescence intensity is caused by the change of molecular structure caused by aggregation. This detailed AIE luminescence mechanism will provide theoretical guidance for AIE material design.  相似文献   
2.
The bonding situation in the tricoordinated beryllium phenyl complexes [BePh3], [(pyridine)BePh2] and [(trimethylsilyl-N-heterocyclic imine)BePh2] is investigated experimentally and computationally. Comparison of the NMR spectroscopic properties of these complexes and of their structural parameters, which were determined by single crystal X-ray diffraction experiments, indicates the presence of π-interactions. Topology analysis of the electron density reveals elliptical electron density distributions at the bond critical points and the double bond character of the beryllium-element bonds is verified by energy decomposition analysis with the combination of natural orbital for chemical valence. The present beryllium-element bonds are highly polarized and the ligands around the central atom have a strong influence on the degree of π-delocalization. These results are compared to related triarylboranes.  相似文献   
3.
Free carbene readily causes multiple side reactions due to its high energy, thus its asymmetric transformation is very difficult. We present here our findings of high-pKa Brønsted acid catalysts that enable free carbene insertion into N−H bonds of amines to prepare chiral α-amino acid derivatives with high enantioselectivity. Under irradiation with visible light, diazo compounds produce high-energy free carbenes that are captured by amines to form free ylide intermediates, and then the newly designed high-pKa Brønsted acids, chiral spiro phosphamides, promote the proton transfer of ylides to afford the products. Computational and kinetic studies uncover the principle for the rational design of proton-transfer catalysts and explain how the catalysts accelerate this transformation and provide stereocontrol.  相似文献   
4.
A Markovnikov-selective hydrodifluoromethylation of alkynes with BrCF2H via nickel catalysis is described. This protocol proceeds via a migratory insertion of nickel hydride to alkyne followed by a CF2H-coupling, enabling straightforward access to diverse branched CF2H-alkenes with high efficiency and exclusive regioselectivity. The mild condition applies to a wide array of aliphatic and aryl alkynes with good functional group compatibility. Mechanistic studies are presented to support the proposed pathway.  相似文献   
5.
Non-oxidative dehydrogenation of propane is a highly efficient approach for industrial preparation of propene that is commonly catalyzed by noble Pt or toxic Cr catalysts and suffers from coking. In this work, ferric catalyst confined in a zeolite framework was synthesized by a hydrothermal procedure. The isolated Fe in the framework formed distorted tetrahedra, which were beneficial for the selective dehydrogenation of propane and reached over 95 % propene selectivity and over 99 % total olefins selectivity. This catalyst had a silanol-free structure and was oxygen tolerant, hydrothermally stable, and coke free, with a deactivation constant of 0.01 h−1. This study provided guidance for the synthesis of structural heteroatomic zeolite and efficient propane non-oxidative dehydrogenation over early transition metals.  相似文献   
6.
Double perovskites (DP) have attracted extensive attention due to their rich structures and wide application prospects in the field of optoelectronics. Here, we report 15 new Bi-based double perovskite derived halides with the general formula of A2BBiX6 (A=organic cationic ligand, B=K or Rb, X=Br or I). These materials are synthesized using organic ligands to coordinate with metal ions with a sp3 oxygen, and diverse structure types have been obtained with distinct dimensionalities and connectivity modes. The optical band gaps of these phases can be tuned by changing the halide, the organic ligand and the alkali metal, varying from 2.0 to 2.9 eV. The bromide phases exhibit increasing photoluminescence (PL) intensity with decreasing temperature, while the PL intensity of iodide phases changes nonmonotonically with temperature. Because the majority of these phases are non-centrosymmetric, second harmonic generation (SHG) responses are also measured for selected non-centrosymmetric materials, showing different particle-size-dependent trends. Our findings give rise to a series of new structural types to the DP family, and provide a powerful synthetic handle for symmetry breaking.  相似文献   
7.
Covalent adaptable networks (CANs) possess unique properties as a result of their internal dynamic bonds, such as self-healing and reprocessing abilities. In this study, we report a thermally responsive C−Se dynamic covalent chemistry (DCC) that relies on the transalkylation exchange between selenonium salts and selenides, which undergo a fast transalkylation reaction in the absence of any catalyst. Additionally, we demonstrate the presence of a dissociative mechanism in the absence of selenide groups. After incorporation of this DCC into selenide-containing polymer materials, it was observed that the cross-linked networks display varying dynamic exchange rates when using different alkylation reagents, suggesting that the reprocessing capacity of selenide-containing materials can be regulated. Also, by incorporating selenonium salts into polymer materials, we observed that the materials exhibited good healing ability at elevated temperatures as well as excellent solvent resistance at ambient temperature. This novel dynamic covalent chemistry thus provides a straightforward method for the healing and reprocessing of selenide-containing materials.  相似文献   
8.
Sucrose esters (SEs) are crucial tobacco smoke flavor precursors and play a significant role in tobacco's functionality. Due to their structural complexity, the separation and analysis of SEs in tobacco remain a major challenge, and massive structures of SEs have not yet been fully identified. In this study, the fractions enriched in SEs were obtained from oriental and flue-cured tobacco through a series of pretreatments, and two types of SEs (Types I and II) were distinguished by liquid chromatography-tandem mass spectrometry (LC-MSn) analysis, with Type II SEs newly characterized in tobacco. Five groups of main SEs were further purified using preparative high-performance LC (HPLC) coupled to an evaporative light scattering detector, and their structures were characterized by nuclear magnetic resonance spectrometry techniques including 1H, 13C, correlation spectroscopy, heteronuclear single quantum correlation, and heteronuclear multiple bond correlation. By combining LC-MSn and nuclear magnetic resonance spectrometry, the structures of eight SE isomers were finally proposed, of which four were newly identified. These findings further enhance the understanding of the structural diversity of SEs in tobacco, serving as a valuable reference for future research on the elucidation, synthesis, and metabolism of SEs.  相似文献   
9.
SiO2-supported Ni-Mo bimetallic phosphides were prepared by temperature-programmed reduction(TPR) method from the phosphate precursors calcined at different temperatures. Their properties were characterized by means of ultraviolet-visible diffuse reflectance spectroscopy(UV-Vis DRS), H2temperature-programmed reduction(H2-TPR), X-ray diffraction(XRD), transmission electron microscopy(TEM), CO chemisorption, H2 and NH3temperature-programmed desorptions(H2-TPD and NH3-TPD). Their catalytic performances for the deoxygenation of methyl laurate were tested in a fixed-bed reactor. When the precursors were calcined at 400 and 500?C, respectively, Ni Mo P2 phase could be formed apart from Ni2 P and Mo P phases in the prepared C400 and C500 catalysts. However, when the precursors were calcined at600, 700 and 800°C, respectively, only Ni2 P and Mo P phases could be detected in the prepared C600, C700 and C800 catalysts. Also, in C400, C500 and C600 catalysts, Mo atoms were found to be entered in the lattice of Ni2 P phase, but the entering extent became less with the increase of calcination temperature. As the calcination temperature of the precursor increased, the interaction between Ni and Mo in the prepared catalysts decreased, and the phosphide crystallite size tended to increase, subsequently leading to the decrease in the surface metal site density and the acid amount. C600 catalyst showed the highest activity among the tested ones for the deoxygenation of methyl laurate. As the calcination temperature of the precursor increased, the selectivity to C12 hydrocarbons decreased while the selectivity to C11 hydrocarbons tended to increase. This can be mainly attributed to the decreased Ni-Mo interaction and the increased phosphide particle size. In sum, the structure and performance of Ni-Mo bimetallic phosphide catalyst can be tuned by the calcination temperature of precursor.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号