首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   115篇
  免费   11篇
  国内免费   2篇
化学   95篇
晶体学   3篇
力学   1篇
数学   8篇
物理学   21篇
  2024年   1篇
  2022年   6篇
  2021年   2篇
  2020年   3篇
  2019年   7篇
  2018年   4篇
  2017年   3篇
  2016年   11篇
  2015年   10篇
  2014年   7篇
  2013年   9篇
  2012年   8篇
  2011年   11篇
  2010年   3篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   9篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2001年   1篇
  2000年   1篇
  1999年   2篇
  1996年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1981年   1篇
  1975年   2篇
  1974年   1篇
排序方式: 共有128条查询结果,搜索用时 15 毫秒
71.
Multiple-input Multiple-Output (MIMO) systems require orthogonal frequency division multiplexing to operate efficiently in multipath communication (OFDM). Channel estimation (C.E.) is used in channel conditions where time-varying features are required. The existing channel estimation techniques are highly complicated. A channel estimation algorithm is needed to estimate the received signal’s correctness. In order to resolve this complexity in C.E. methodologies, this paper developed an Improved Channel Estimation Algorithm integrated with DFT-LS-WIENER (ICEA-DA). The Least Square (L.S.) and Minimum Mean Square Error (MMSE) algorithms also use the Discrete Fourier Transform (DFT)-based channel estimation method. The DFT-LS-WIENER channel estimation approach is recommended for better BER performance. The input signal is modulated in the transmitter module using the Quadrature Phase Shift Keying (QPSK) technique, pulse modeling, and least squares concepts. The L.S. Estimation technique needs the channel consistent throughout the estimation period. DFT joined with L.S. gives higher estimation precision and limits M.S.E. and BER. Experimental analysis of the proposed state-of-the-art method shows that DFT-LS-WIENER provides superior performance in terms of symbol error rate (S.E.R.), bit error rate (BER), channel capacity (CC), and peak signal-to-noise (PSNR). At 15 dB SNR, the proposed DFT-LS-WIENER techniques reduce the BER of 48.19%, 38.19%, 14.8%, and 14.03% compared to L.S., LS-DFT, MMSE, and MMSE-DFT. Compared to the conventional algorithm, the proposed DFT-LS-WIENER outperform them.  相似文献   
72.
Cancer chemotherapy-induced cognitive impairment (chemobrain) is a major complication that affects the prognosis of therapy. Our study evaluates the nootropic-like activity of levetiracetam (LEVE) against doxorubicin (DOX)-induced memory defects using in vivo and molecular modelling. Rats were treated with LEVE (100 and 200 mg/kg, 30 days) and chemobrain was induced by four doses of DOX (2 mg/kg, i.p.). Spatial memory parameters were evaluated using an elevated plus maze (EPM) and Y-maze. Additionally, acetylcholinesterase (AChE) and the neuroinflammatory biomarkers cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2), nuclear factor-κB (NF-κB), and tumor necrosis factor-alpha (TNF-α) were analyzed using brain homogenate. PharmMapper was used for inverse docking and AutoDock Vina was used for molecular docking. LEVE treatment significantly diminished the DOX-induced memory impairment parameters in both the EPM and Y-maze. In addition, the drug treatment significantly reduced AChE, COX-2, PGE2, NF-κB, and TNF-α levels compared to DOX-treated animals. The inverse docking procedures resulted in the identification of AChE as the potential target. Further molecular modelling studies displayed interactions with residues Gly118, Gly119, and Ser200, critical for the hydrolysis of ACh. Analysis of the results suggested that administration of LEVE improved memory-related parameters in DOX-induced animals. The ‘nootropic-like’ activity could be related to diminished AChE and neuroinflammatory mediator levels.  相似文献   
73.
Polyethyleneglycol bound sulfonic acid (PEG-OSO?H), a chlorosulphonic acid-modified polyethylene glycol was successfully used as an efficient and eco-friendly polymeric catalyst in the synthesis of 14-aryl/heteroaryl-14H-dibenzo[a,j]xanthenes obtained from the reaction of 2-naphthol and carbonyl compounds under solvent-free conditions with short reaction times and excellent yields. The biological properties of these synthesized title compounds revealed that compounds 3b, 3c, 3f and 3i showed highly significant anti-viral activity against tobacco mosaic virus.  相似文献   
74.
Lesinurad (systematic name: 2‐{[5‐bromo‐4‐(4‐cyclopropylnaphthalen‐1‐yl)‐4H‐1,2,4‐triazol‐3‐yl]sulfanyl}acetic acid, C17H14BrN3O2S) is a selective uric acid reabsorption inhibitor related to gout, which exhibits poor aqueous solubility. High‐throughput solid‐form screening was performed to screen for new solid forms with improved pharmaceutically relevant properties. During polymorph screening, we obtained two solvates with methanol (CH3OH) and ethanol (C2H5OH). Binary systems with caffeine (systematic name: 3,7‐dihydro‐1,3,7‐trimethyl‐1H‐purine‐2,6‐dione, C8H10N4O2) and nicotinamide (C6H6N2O), polymorphs with urea (CH4N2O) and eutectics with similar drugs, like allopurinol and febuxostat, were prepared using the crystal engineering approach. All these novel solid forms were confirmed by XRD, DSC and FT–IR. The crystal structures were solved by single‐crystal and powder X‐ray diffraction. The crystal structures indicate that the lesinurad molecule is highly flexible and the triazole moiety, along with the rotatable thioacetic acid (side chain) and cyclopropane ring, is almost perpendicular to the planar naphthalene moiety. The carboxylic acid–triazole heterosynthon in the drug is interrupted by the presence of methanol and ethanol molecules in their crystal structures and forms intermolecular macrocyclic rings. The caffeine cocrystal maintains the consistency of the acid–triazole heterosynthons as in the drug and, in addition, they are bound by several auxiliary interactions. In the binary system of nicotinamide and urea, the acid–triazole heterosynthon is replaced by an acid–amide synthon. Among the urea cocrystal polymorphs, Form I (P, 1:1) consists of an acid–amide (urea) heterodimer, whereas in Form II (P21/c, 2:2), both acid–amide heterosynthons and urea–urea dimers co‐exist. Density functional theory (DFT) calculations further support the experimentally observed synthon hierarchies in the cocrystals. Aqueous solubility experiments of lesinurad and its binary solids in pH 5 acetate buffer medium indicate the apparent solubility order lesinurad–urea Form I (43‐fold) > lesinurad–caffeine (20‐fold) > lesinurad–allopurinol (12‐fold) ? lesinurad–nicotinamide (11‐fold) > lesinurad, and this order is correlated with the crystal structures.  相似文献   
75.
We report on a sensitive electrochemical sensor for dopamine (DA) based on a glassy carbon electrode that was modified with a nanocomposite containing electrochemically reduced graphene oxide (RGO) and palladium nanoparticles (Pd-NPs). The composite was characterized by scanning electron microscopy, energy dispersive spectroscopy, and electrochemical impendence spectroscopy. The electrode can oxidize DA at lower potential (234 mV vs Ag/AgCl) than electrodes modified with RGO or Pd-NPs only. The response of the sensor to DA is linear in the 1–150 μM concentration range, and the detection limit is 0.233 μM. The sensor was applied to the determination of DA in commercial DA injection solutions.
Figure
Schematic representation showing the oxidation of DA at RGO-Pd-NPs composite electrode.  相似文献   
76.
A new series of geometrically different complexes containing ferrocenyl hydrazone ligands were synthesised by reacting suitable precursor complex [MCl(2)(PPh(3))(2)] with the ligands HL(1) or HL(2) (where M = Cu(II) or Ni(II); HL(1) = [Cp(2)Fe(CH=N-NH-CO-C(6)H(5))] (1) and HL(2) = [Cp(2)Fe(CH=N-NH-CO-C(5)H(4)N)]) (2). The new complexes of the composition [Cu(L(1))(PPh(3))(2)], (3) [Cu(L(2))(PPh(3))(2)] (4), [Ni(L(1))(2)] (5) and [Ni(L(2))(2)] (6) were characterised by various spectral studies. Among them, complexes 3 and 5 characterised by single crystal X-ray diffraction showed a distorted tetrahedral structure for the former with 1:1 metal-ligand stoichiometry, but a distorted square planar geometry with 1:2 metal-ligand stoichiometry in the case of the latter. Systematic biological investigations like DNA binding, DNA cleavage, protein binding, free radical scavenging and cytotoxicity activities were carried out using all the synthesised compounds and the results obtained were explained on the basis of structure-activity relationships. The binding constant (K(b)) values of the synthesised compounds are found to be in the order of magnitude 10(3)-10(5) M(-1) and also they exhibit significant cleavage of supercoiled (SC) pUC19 DNA in the presence of H(2)O(2) as co-oxidant. The conformational changes of bovine serum albumin (BSA) upon binding with the above complexes were also studied. In addition, concentration dependent free radical scavenging potential of all the synthesised compounds (1-6) was also carried out under in vitro conditions. Assays on the cytotoxicity of the above complexes against HeLa and A431 tumor cells and NIH 3T3 normal cells were also carried out.  相似文献   
77.
Ostrich oil has been used extensively in the cosmetic and pharmaceutical industries. However, rancidity causes undesirable chemical changes in flavour, colour, odour and nutritional value. Bleaching is an important process in refining ostrich oil. Bleaching refers to the removal of certain minor constituents (colour pigments, free fatty acid, peroxides, odour and non-fatty materials) from crude fats and oils to yield purified glycerides. There is a need to optimize the bleaching process of crude ostrich oil prior to its use for therapeutic purposes. The objective of our study was to establish an effective method to bleach ostrich oil using peroxide value as an indicator of refinement. In our study, we showed that natural earth clay was better than bentonite and acid-activated clay to bleach ostrich oil. It was also found that 1 hour incubation at a 150 °C was suitable to lower peroxide value by 90%. In addition, the nitrogen trap technique in the bleaching process was as effective as the continuous nitrogen flow technique and as such would be the recommended technique due to its cost effectiveness.  相似文献   
78.
We have studied the direct electrochemistry of glucose oxidase (GOx) immobilized on electrochemically fabricated graphite nanosheets (GNs) and zinc oxide nanoparticles (ZnO) that were deposited on a screen printed carbon electrode (SPCE). The GNs/ZnO composite was characterized by using scanning electron microscopy and elemental analysis. The GOx immobilized on the modified electrode shows a well-defined redox couple at a formal potential of ?0.4 V. The enhanced direct electrochemistry of GOx (compared to electrodes without ZnO or without GNs) indicates a fast electron transfer at this kind of electrode, with a heterogeneous electron transfer rate constant (Ks) of 3.75 s?1. The fast electron transfer is attributed to the high conductivity and large edge plane defects of GNs and good conductivity of ZnO-NPs. The modified electrode displays a linear response to glucose in concentrations from 0.3 to 4.5 mM, and the sensitivity is 30.07 μA mM?1 cm?2. The sensor exhibits a high selectivity, good repeatability and reproducibility, and long term stability. Figure
Graphical representation for the fabrication of GNs/ZnO composite modified SPCE and the immobilization of GOx  相似文献   
79.
The meso-tetra(para-aminophenyl) porphyrinatocobalt(II) (Co(II)MTpAP) and meso-tetra(para-aminophenyl)porphyrinatonickel(II) (Ni(II)MTpAP) were self-assembled on a glassy carbon electrode (GCE) and were utilized for the oxidation of hydrazine. The oxidation of hydrazine at the self-assembled monolayers (SAMs) of Co(II)MTpAP and Ni(II)MTpAP occurred at ?0.20 and 0.42 V, respectively. When compared to the SAM of Ni(II)MTpAP, Co(II)MTpAP SAM not only decreased the overpotential of hydrazine oxidation but also enormously increased its current. The oxidation of hydrazine was influenced by pH. While increasing the pH, the oxidation potential of hydrazine was shifted towards a less positive potential. Further, an inverted shape cyclic voltammogram (CV) was observed for the oxidation of hydrazine at Co(II)MTpAP-modified GCE, whereas a normal CV curve was observed at Ni(II)MTpAP-modified GCE. The appearance of the inverted shape peak for hydrazine oxidation at the SAM of Co(II)MTpAP is due to the oxidation of axially ligated hydrazine molecules during the reverse potential scan. The hydrazine oxidation was also performed at amine-functionalized cobalt and nickel phthalocyanine-modified electrodes in order to study the influence of a macrocyclic ring. Irrespective of the macrocyclic ring, an inverted shape CV was observed at cobalt phthalocyanine-modified electrode.  相似文献   
80.
Green biosynthesis of nanoparticles and their applications in sensor field is of great interest to the researchers. We report herein a simple green approach for the synthesis of silver nanoparticles (Ag-NPs) using Acacia nilotica Willd twig bark and its application for the detection of 4-nitro phenol (4-NP). The synthesized Ag-NPs were characterized by Transmission electron microscopy, X-ray diffraction and elemental analysis. The size of synthesized Ag-NPs was in the range of 10–50 nm. The Ag-NPs modified electrode shows a high sensitivity and selectivity towards the sensing of 4-NP. The fabricated modified electrode shows a low detection limit of 15 nM on the wider linear response range from 100 nM to 350 μM with the sensitivity of 2.58?±?0.05 μAμM?1 cm?2. In addition, the fabricated sensor shows good repeatability and reproducibility.
Figure
The schematic representation of the fabrication of Ag-NPs and application of 4-nitrophenol sensing  相似文献   
[首页] « 上一页 [3] [4] [5] [6] [7] 8 [9] [10] [11] [12] [13] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号