首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5072篇
  免费   260篇
  国内免费   12篇
化学   3659篇
晶体学   28篇
力学   139篇
数学   787篇
物理学   731篇
  2023年   48篇
  2022年   63篇
  2021年   105篇
  2020年   102篇
  2019年   102篇
  2018年   106篇
  2017年   89篇
  2016年   217篇
  2015年   165篇
  2014年   171篇
  2013年   325篇
  2012年   424篇
  2011年   475篇
  2010年   226篇
  2009年   207篇
  2008年   355篇
  2007年   345篇
  2006年   307篇
  2005年   277篇
  2004年   237篇
  2003年   184篇
  2002年   165篇
  2001年   95篇
  2000年   96篇
  1999年   66篇
  1998年   48篇
  1997年   28篇
  1996年   42篇
  1995年   18篇
  1994年   35篇
  1993年   29篇
  1992年   30篇
  1991年   21篇
  1990年   15篇
  1989年   18篇
  1988年   17篇
  1987年   8篇
  1986年   9篇
  1985年   12篇
  1984年   12篇
  1983年   10篇
  1982年   6篇
  1981年   4篇
  1980年   6篇
  1979年   3篇
  1978年   2篇
  1977年   6篇
  1976年   3篇
  1975年   3篇
  1973年   4篇
排序方式: 共有5344条查询结果,搜索用时 15 毫秒
991.
An investigation of porosity and isothermal crystallization kinetics of amorphous ice produced either by background water vapour deposition (ASW) or by hyperquenching of liquid droplets (HGW) is presented. These two types of ice are relevant for astronomical ice research (Gálvez et al., Astrophys. J., 2010, 724, 539) and are studied here for the first time under comparable experimental conditions. From CH(4) isothermal adsorption experiments at 40 K, surface areas of 280 ± 30 m(2) g(-1) for the ASW deposits and of 40 ± 12 m(2) g(-1) for comparable HGW samples were obtained. The crystallization kinetics was studied at 150 K by following the evolution of the band shape of the OD stretching vibration in HDO doped ASW and HGW samples generated at 14 K, 40 K and 90 K. Comparable rate constants of ~7 × 10(-4) s(-1) were obtained in all cases. However a significant difference was found between the n Avrami parameter of the samples generated at 14 K (n~ 1) and that of the rest (n > 2). This result hints at the possible existence of a structurally different form of amorphous ice for very low generation temperatures, already suggested in previous literature works.  相似文献   
992.
The C-alkyl groups of C-alkylpyrazinium-derived ligands have been selectively deprotonated by K[N(SiMe(3))(2)], through charge-controlled processes, to give neutral products that contain C-alkylidenepyrazine-derived ligands.  相似文献   
993.
We describe the use of polyatomic anions for the quantitative assembly of ion-paired complexes displaying pseudorotaxane topology. Our approach exploits the unique ion-pair recognition properties exhibited by noncovalent neutral receptors assembled through hydrogen-bonding interactions between a bis-calix[4]pyrrole macrocycle and linear bis-amidepyridyl-N-oxides. The complexation of bidentate polyatomic anions that are complementary in size and shape to the receptor's cavity, in which six NH hydrogen-bond donors converge, induces the exclusive formation of four particle-threaded assemblies.  相似文献   
994.
The smallest fullerene to form in condensing carbon vapor has received considerable interest since the discovery of Buckminsterfullerene, C(60). Smaller fullerenes remain a largely unexplored class of all-carbon molecules that are predicted to exhibit fascinating properties due to the large degree of curvature and resulting highly pyramidalized carbon atoms in their structures. However, that curvature also renders the smallest fullerenes highly reactive, making them difficult to detect experimentally. Gas-phase attempts to investigate the smallest fullerene by stabilization through cage encapsulation of a metal have been hindered by the complexity of mass spectra that result from vaporization experiments which include non-fullerene clusters, empty cages, and metallofullerenes. We use high-resolution FT-ICR mass spectrometry to overcome that problem and investigate formation of the smallest fullerene by use of a pulsed laser vaporization cluster source. Here, we report that the C(28) fullerene stabilized by encapsulation with an appropriate metal forms directly from carbon vapor as the smallest fullerene under our conditions. Its stabilization is investigated, and we show that M@C(28) is formed by a bottom-up growth mechanism and is a precursor to larger metallofullerenes. In fact, it appears that the encapsulating metal species may catalyze or nucleate endohedral fullerene formation.  相似文献   
995.
Solar-to-fuel conversion devices require not only efficient catalysts to accelerate the reactions, but also light harvesting and charge separation components to absorb multiple photons and to deliver multiple electrons/holes to the catalytic centers. In this paper, we show that the spatial distribution of electron and hole wave functions in CdSe/CdS quasi-type II quantum dots enables simultaneous ultrafast charge separation (0.18 ps to adsorbed Methylviologen), ultraslow charge recombination (0.4 μs), and slow multiple-exciton Auger annihilation (biexciton lifetime 440 ps). Up to nineteen excitons per QD can be generated by absorbing multiple 400 nm photons and all excitons can be dissociated with unity yield by electron transfer to adsorbed methylviologen molecules. Our finding demonstrates that (quasi-) type II nanoheterostructures can be engineered to efficiently dissociate multiple excitons and deliver multiple electrons to acceptors, suggesting their potential applications as light harvesting and charge separation components in artificial photosynthetic devices.  相似文献   
996.
The optical properties of stoichiometric copper chalcogenide nanocrystals (NCs) are characterized by strong interband transitions in the blue part of the spectral range and a weaker absorption onset up to ~1000 nm, with negligible absorption in the near-infrared (NIR). Oxygen exposure leads to a gradual transformation of stoichiometric copper chalcogenide NCs (namely, Cu(2-x)S and Cu(2-x)Se, x = 0) into their nonstoichiometric counterparts (Cu(2-x)S and Cu(2-x)Se, x > 0), entailing the appearance and evolution of an intense localized surface plasmon (LSP) band in the NIR. We also show that well-defined copper telluride NCs (Cu(2-x)Te, x > 0) display a NIR LSP, in analogy to nonstoichiometric copper sulfide and selenide NCs. The LSP band in copper chalcogenide NCs can be tuned by actively controlling their degree of copper deficiency via oxidation and reduction experiments. We show that this controlled LSP tuning affects the excitonic transitions in the NCs, resulting in photoluminescence (PL) quenching upon oxidation and PL recovery upon subsequent reduction. Time-resolved PL spectroscopy reveals a decrease in exciton lifetime correlated to the PL quenching upon LSP evolution. Finally, we report on the dynamics of LSPs in nonstoichiometric copper chalcogenide NCs. Through pump-probe experiments, we determined the time constants for carrier-phonon scattering involved in LSP cooling. Our results demonstrate that copper chalcogenide NCs offer the unique property of holding excitons and highly tunable LSPs on demand, and hence they are envisaged as a unique platform for the evaluation of exciton/LSP interactions.  相似文献   
997.
The electrosynthetic method has been used for the selective synthesis of fullerene derivatives that are otherwise not accessible by other procedures. Recent attempts to electrosynthesize Sc(3)N@I(h)-C(80) derivatives using the Sc(3)N@I(h)-C(80) dianion were unsuccessful because of its low nucleophilicity. Those results prompted us to prepare the Sc(3)N@C(80) trianion, which should be more nucleophilic and reactive with electrophilic reagents. The reaction between Sc(3)N@C(80) trianions and benzal bromide (PhCHBr(2)) was successful and yielded a methano derivative, Sc(3)N@I(h)-C(80)(CHPh) (1), in which the >CHPh addend is selectively attached to a [6,6] ring junction, as characterized by MALDI-TOF mass spectrometry and NMR and UV-vis-NIR spectroscopy. The electrochemistry of 1 was studied using cyclic voltammetry, which showed that 1 exhibits the typical irreversible cathodic behavior of pristine Sc(3)N@I(h)-C(80), resembling the behavior of other methano adducts of Sc(3)N@I(h)-C(80). The successful synthesis of endohedral metallofullerene derivatives using trianionic Sc(3)N@I(h)-C(80) and dianionic Lu(3)N@I(h)-C(80), but not dianionic Sc(3)N@I(h)-C(80), prompted us to probe the causes using theoretical calculations. The Sc(3)N@I(h)-C(80) trianion has a singly occupied molecular orbital with high spin density localized on the fullerene cage, in contrast to the highest occupied molecular orbital of the Sc(3)N@I(h)-C(80) dianion, which is mainly localized on the inside cluster. The calculations provide a clear explanation for the different reactivities observed for the dianions and trianions of these endohedral fullerenes.  相似文献   
998.
Colloidal semiconductor-metal nanoheterostructures that combine the light-harvesting ability of semiconductor nanocrystals with the catalytic activity of small metal nanoparticles show promising applications for photocatalysis, including light-driven H(2) production. The exciton in the semiconductor domain can be quenched by electron-, hole-, and energy transfer to the metal particle, and the competition between these processes determines the photocatalytic efficiency of these materials. Using ultrafast transient absorption spectroscopy, we show that, in CdS-Pt heterostructures consisting of a CdS nanorod with a Pt nanoparticle at one end, the excitons in the CdS domain dissociate by ultrafast electron transfer (with a half-life of ~3.4 ps) to the Pt. The charge separated state is surprisingly long-lived (with a half-life of ~1.2 ± 0.6 μs) due to the trapping of holes in CdS. The asymmetry in the charge separation and recombination times is believed to be the key feature that enables the accumulation of the transferred electrons in the Pt tip and photocatalysis in the presence of sacrificial hole acceptors.  相似文献   
999.
This study is aimed of producing pilot batches of hydrogel wound dressings by gamma radiation and evaluating their shelf stability. Six batches of 3L capacity were prepared based on poly(vinyl pyrrolidone), agar and polyethylene glycol and they were dispensed in polyester trays, covered with polyester films and sealed in two types of materials: polyethylene bags and vacuum polyethylene bags. Dressings were formed in a single step process for the hydrogel formation and sterilization at 25–30 kGy gamma radiation dose in a JS-9500 Gamma Irradiator (Nordion, Canada). The six batches were initially physicochemical characterized in terms of dimensions and appearance, gel fraction, morphology analysis, hydrogel strength, moisture retention capability and swelling capacity. They were kept under two storage conditions: room temperature (T: 30±2 °C/RH: 70± 5%) and refrigerated temperature (T: 5±3 °C) during 24 months and sterility test was performed. The appearance of membranes was transparent, clear, uncut and flexible; the gel fraction of batches was higher than 75% and the hydrogel surface showed a porous structure. There was a slow decrease of the compression rate 20% until 7 h and about 70% at 24 h. Moisture retention capability in 5 h was similar for all the batches, about 40% and 60% at 37 °C and at room temperature respectively. The swelling of hydrogels in acidic media was strong and in alkaline media the weight variation remains almost stable until 24 h and then there is a loss of weight. The six batches remained sterile during the stability study in the conditions tested. The pilot batches were consistent from batch to batch and remained stable during 24 months.  相似文献   
1000.
Our goal in this paper is to provide sufficient conditions for the existence of solutions to discrete, nonlinear systems subject to multipoint boundary conditions. The criteria we present depends on the size of the nonlinearity and the set of solutions to the corresponding linear, homogeneous boundary value problems. Our analysis is based on the Lyapunov–Schmidt Procedure and Brouwer?s Fixed Point Theorem. The results presented extend the previous work of D. Etheridge and J. Rodríguez (1996, 1998) [5], [6] and J. Rodríguez and P. Taylor (2007) [18], [19].  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号