首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   374篇
  免费   5篇
化学   152篇
晶体学   3篇
力学   48篇
数学   37篇
物理学   139篇
  2020年   6篇
  2019年   6篇
  2017年   3篇
  2016年   4篇
  2015年   9篇
  2014年   3篇
  2013年   19篇
  2012年   14篇
  2011年   18篇
  2010年   9篇
  2009年   5篇
  2008年   8篇
  2007年   13篇
  2006年   7篇
  2005年   4篇
  2004年   9篇
  2003年   23篇
  2002年   13篇
  2001年   11篇
  2000年   12篇
  1999年   18篇
  1998年   3篇
  1997年   3篇
  1996年   10篇
  1995年   7篇
  1994年   4篇
  1993年   7篇
  1992年   8篇
  1991年   5篇
  1988年   7篇
  1987年   3篇
  1986年   6篇
  1985年   7篇
  1981年   5篇
  1980年   6篇
  1979年   4篇
  1978年   8篇
  1977年   6篇
  1975年   4篇
  1974年   3篇
  1973年   9篇
  1971年   2篇
  1967年   2篇
  1966年   4篇
  1955年   2篇
  1936年   4篇
  1934年   2篇
  1933年   2篇
  1927年   3篇
  1926年   2篇
排序方式: 共有379条查询结果,搜索用时 15 毫秒
51.
Quality control of cacao beans is a significant issue in the chocolate industry. In this report, we describe how moisture damage to cacao beans alters the volatile chemical signature of the beans in a way that can be tracked quantitatively over time. The chemical signature of the beans is monitored via sampling the headspace of the vapor above a given bean sample. Headspace vapor sampled with solid-phase micro-extraction (SPME) was detected and analyzed with comprehensive two-dimensional gas chromatography combined with time-of-flight mass spectrometry (GC × GC–TOFMS). Cacao beans from six geographical origins (Costa Rica, Ghana, Ivory Coast, Venezuela, Ecuador, and Panama) were analyzed. Twenty-nine analytes that change in concentration levels via the time-dependent moisture damage process were measured using chemometric software. Biomarker analytes that were independent of geographical origin were found. Furthermore, prediction algorithms were used to demonstrate that moisture damage could be verified before there were visible signs of mold by analyzing subsets of the 29 analytes. Thus, a quantitative approach to quality screening related to the identification of moisture damage in the absence of visible mold is presented.  相似文献   
52.
We consider the adjacency operator of the Linial‐Meshulam model for random simplicial complexes on n vertices, where each d‐cell is added independently with probability p to the complete ‐skeleton. Under the assumption , we prove that the spectral gap between the smallest eigenvalues and the remaining eigenvalues is with high probability. This estimate follows from a more general result on eigenvalue confinement. In addition, we prove that the global distribution of the eigenvalues is asymptotically given by the semicircle law. The main ingredient of the proof is a Füredi‐Komlós‐type argument for random simplicial complexes, which may be regarded as sparse random matrix models with dependent entries. © 2017 Wiley Periodicals, Inc. Random Struct. Alg., 51, 506–537, 2017  相似文献   
53.
54.
An experiment was carried out by Sammis and Dein [1974] to support the notion that large creep strains could be generated in the earth's mantle by solid-solid phase transitions. The predictions of the thermoelastic model given here are in qualitative agreement with the results of their experiment.  相似文献   
55.
56.
57.
In uniaxial tension, the stress–strain curve for rubber changes curvature from concave to convex as the strain increases. For sudden tensile loading of a bar, a one-dimensional model that reflects this behavior leads to an under-determined problem reminiscent of that arising in materials capable of undergoing phase transitions. In the latter setting, adding the kinetic relation underlying the phase change to the conventional statement of the problem removes the indeterminacy; the same is true when such a relation is used in a formal way in the problem for rubber. This presents a physical question: What is the evolutionary process at the microscale whose kinetics are needed in the dynamics of rubber?  相似文献   
58.
Much effort has focussed in recent years on probing the interactions of small molecules with amyloid fibrils and other protein aggregates. Understanding and control of such interactions are important for the development of diagnostic and therapeutic strategies in situations where protein aggregation is associated with disease. In this perspective article we give an overview over the toolbox of biophysical methods for the study of such amyloid-small molecule interactions. We discuss in detail two recently developed techniques within this framework: linear dichroism, a promising extension of the more traditional spectroscopic techniques, and biosensing methods, where surface-bound amyloid fibrils are exposed to solutions of small molecules. Both techniques rely on the measurement of physical properties that are very directly linked to the binding of small molecules to amyloid aggregates and therefore provide an attractive route to probe these important interactions.  相似文献   
59.
We consider Hermitian and symmetric random band matrices H in d \geqslant 1{d \geqslant 1} dimensions. The matrix elements H xy , indexed by x,y ? L ì \mathbbZd{x,y \in \Lambda \subset \mathbb{Z}^d}, are independent and their variances satisfy sxy2:=\mathbbE |Hxy|2 = W-d f((x - y)/W){\sigma_{xy}^2:=\mathbb{E} |{H_{xy}}|^2 = W^{-d} f((x - y)/W)} for some probability density f. We assume that the law of each matrix element H xy is symmetric and exhibits subexponential decay. We prove that the time evolution of a quantum particle subject to the Hamiltonian H is diffusive on time scales t << Wd/3{t\ll W^{d/3}} . We also show that the localization length of the eigenvectors of H is larger than a factor Wd/6{W^{d/6}} times the band width W. All results are uniform in the size |Λ| of the matrix. This extends our recent result (Erdős and Knowles in Commun. Math. Phys., 2011) to general band matrices. As another consequence of our proof we show that, for a larger class of random matrices satisfying ?xsxy2=1{\sum_x\sigma_{xy}^2=1} for all y, the largest eigenvalue of H is bounded with high probability by 2 + M-2/3 + e{2 + M^{-2/3 + \varepsilon}} for any ${\varepsilon > 0}${\varepsilon > 0}, where M : = 1 / (maxx,ysxy2){M := 1 / (\max_{x,y}\sigma_{xy}^2)} .  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号