首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   5篇
化学   64篇
数学   5篇
物理学   36篇
  2023年   4篇
  2021年   2篇
  2020年   4篇
  2019年   5篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   11篇
  2011年   3篇
  2010年   10篇
  2009年   8篇
  2008年   4篇
  2007年   8篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1988年   2篇
  1987年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   5篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1972年   2篇
排序方式: 共有105条查询结果,搜索用时 15 毫秒
81.
Reaction of nickel(II) thiocyanate and pyridazine (pdz) as organic spacer ligand leads to the formation of the ligand‐rich 1:2 (1:2 = metal to ligand ratio) trinuclear nickel(II) complex of composition [Ni3(NCS)6(pdz)6]. Depending on the reaction solvent, different polymorphic modifications are obtained: Reaction in acetonitrile leads to the formation of the new modification 1I and reaction in ethanol leads to the formation of modification 1II reported recently. In their crystal structures discrete [Ni3(NCS)6(pdz)6] units are found, in which each of the Ni2+ cations exhibits a NiN6 distorted octahedral arrangement. The central Ni2+ cation is coordinated by four bridging pdz ligands and two thiocyanato anions in trans positions. Both thiocyanato anions exhibit the end‐on bridging mode. The peripheral Ni2+ cations are bridged by one thiocyanato anion and by two pdz ligands with the central Ni2+ cation. Further they are coordinated by two terminal N‐bonded thiocyanato anions and one terminal N‐bonded pdz ligand. The structure of 1I was determined by X‐ray single crystal structure investigation and emphasized by infrared spectroscopy. Magnetic measurements revealed a quasi Curie behavior with net ferromagnetic interactions for 1I and net antiferromagnetic interactions for 1II . Solvent‐mediated conversion experiments clearly show that modification 1I represents the thermodynamic most stable form at room temperature and that modification 1II is metastable. On thermal decomposition, both modification transform quantitatively in a new ligand‐deficient intermediate. Elemental analysis revealed a 3:4 compound of composition [Ni3(NCS)6(pdz)4]. A structure model supported by IR spectroscopic investigations was assumed, in which three coordination modes of the thiocyanato anion exist, resulting in a 2D polymeric network.  相似文献   
82.
Using a 10 W copper vapor laser we have studied a stimulated emission at 520–570 nm in the DX electronic transition of the NaK heteronuclear molecule. The influence of the cavity configuration on the bound-bound stimulated lines is considered.  相似文献   
83.
The range of molecular silicon phosphorus compounds has been extended by some new species containing oligosilane ((R2Si)n; n ≥ 2) or oligosiloxane ((R2SiO)mSiR2; m ≥ 1) fragments bound to phosphorus atoms. Primary and secondary compounds of these types allow for the synthesis of metal derivatives. Such metalated species usually form oligomers and exhibit a versatile structural chemistry with cyclic, polycyclic, and cage‐like patterns. The main results obtained in the field of oligosilane‐ and oligosiloxane‐bridged phosphines will be presented below and the structures of the metal derivatives will be discussed. Moreover, the synthesis of an inorganic ligand on the basis of siloxane‐bridged phosphines will be presented. This compound opens up a new chapter in host‐guest chemistry.  相似文献   
84.
Para-quinodimethane (pQDM) is a fundamental structural component in many π-conjugated organic molecules and materials. The incorporation of phosphorus atom into π-conjugated frameworks offers unique opportunities for controlling the properties of derived species. A phosphorus analogue of p-quinodimethane (pQDM), (IPrC)2P4 [ 5 , IPr=C{N(Ar)CH2}2; Ar=2,6-iPr2C6H3] featuring a planar P4 ring, was readily accessible by KC8-reduction of (IPrC)(PCl2)2 ( 2 ). Base-mediated C−H functionalization of IPrCH2 ( 1 ) with PCl3 afforded 2 . The formation of 5 was expected to occur through a dimerization of the transient 3H-diphosphirene (IPrC)P2 ( 4 ), which was theoretically suggested to have an intermediate diradical character. Compound 5 underwent photo-induced ring-contraction reaction to form the singlet diradicaloid (IPrCP)2 VI and white phosphorus (P4). The formation of and VI and P4 suggested the formal diphosphorus (P2) elimination from 5 . Indeed, photolysis of a mixture of 1,3-cyclohexadiene (CHD) and 5 led to the formation of P2-entrapped product (CHD)2P2 ( 6 ). The compound 5 represents the first organophosphorus species that functions as a P2 source.  相似文献   
85.
A review of processes that occur in high energy heavy ion acceleration by synchrotrons and colliders and that are essential for the accelerator performance is presented. Interactions of ions with the residual gas molecules/atoms and with stripping foils that deliberately intercept the ion trajectories are described in details. These interactions limit both the beam intensity and the beam quality. The processes of electron loss and capture lie at the root of heavy ion charge exchange injection. The review pays special attention to the ion induced vacuum pressure instability which is one of the main factors limiting the beam intensity. The intrabeam scattering phenomena which restricts the average luminosity of ion colliders is discussed. Some processes in nuclear interactions of ultra-relativistic heavy ions that could be dangerous for the performance of ion colliders are represented in the last chapter. The text was submitted by the author in English.  相似文献   
86.
87.
88.
The use of fluorescence techniques has an enormous impact on various research fields including imaging, biochemical assays, DNA-sequencing and medical technologies. This has been facilitated by the development of numerous commercial dyes with optimized photophysical and chemical properties. Often, however, information about the chemical structures of dyes and the attached linkers used for bioconjugation remain a well-kept secret. This can lead to problems for research applications where knowledge of the dye structure is necessary to predict or understand (unwanted) dye-target interactions, or to establish structural models of the dye-target complex. Using a combination of optical spectroscopy, mass spectrometry, NMR spectroscopy and molecular dynamics simulations, we here investigate the molecular structures and spectroscopic properties of dyes from the Alexa Fluor (Alexa Fluor 555 and 647) and AF series (AF555, AF647, AFD647). Based on available data and published structures of the AF and Cy dyes, we propose a structure for Alexa Fluor 555 and refine that of AF555. We also resolve conflicting reports on the linker composition of Alexa Fluor 647 maleimide. We also conducted a comprehensive comparison between Alexa Fluor and AF dyes by continuous-wave absorption and emission spectroscopy, quantum yield determination, fluorescence lifetime and anisotropy spectroscopy of free and protein-attached dyes. All these data support the idea that Alexa Fluor and AF dyes have a cyanine core and are a derivative of Cy3 and Cy5. In addition, we compared Alexa Fluor 555 and Alexa Fluor 647 to their structural homologs AF555 and AF(D)647 in single-molecule FRET applications. Both pairs showed excellent performance in solution-based smFRET experiments using alternating laser excitation. Minor differences in apparent dye-protein interactions were investigated by molecular dynamics simulations. Our findings clearly demonstrate that the AF-fluorophores are an attractive alternative to Alexa- and Cy-dyes in smFRET studies or other fluorescence applications.  相似文献   
89.
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号