首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   404篇
  免费   7篇
化学   192篇
晶体学   4篇
力学   17篇
数学   44篇
物理学   154篇
  2021年   2篇
  2018年   7篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2013年   54篇
  2012年   13篇
  2011年   9篇
  2010年   8篇
  2009年   9篇
  2008年   20篇
  2007年   16篇
  2006年   11篇
  2005年   12篇
  2004年   9篇
  2003年   13篇
  2002年   10篇
  2001年   16篇
  2000年   13篇
  1999年   12篇
  1998年   2篇
  1997年   2篇
  1996年   17篇
  1995年   9篇
  1994年   5篇
  1993年   7篇
  1992年   7篇
  1991年   6篇
  1990年   5篇
  1989年   8篇
  1988年   3篇
  1987年   3篇
  1986年   9篇
  1985年   9篇
  1984年   2篇
  1983年   2篇
  1982年   4篇
  1981年   6篇
  1980年   4篇
  1979年   4篇
  1978年   5篇
  1977年   8篇
  1976年   5篇
  1975年   2篇
  1974年   2篇
  1973年   9篇
  1972年   4篇
  1971年   2篇
  1968年   2篇
  1885年   1篇
排序方式: 共有411条查询结果,搜索用时 15 毫秒
71.
Recent research has shown that a phase transformation of diamond to a different form of carbon is involved when diamonds are polished in the traditional fashion. The question as to how this phase transformation is activated and maintained to produce high wear rates is of great technological interest since it may radically change the way we view the processing of diamond. This paper describes the use of Raman spectroscopy to examine debris produced on the diamond polishing wheel, both during its preparation and during polishing. In addition, polished diamond surfaces were examined for the possible existence of non-diamond surface layers in an attempt to identify material removal mechanisms. Raman spectroscopy proves ideal for these analyses because its relatively high spatial resolution is well suited to the analysis of small wear features and debris particles, and because of the wealth of information it reveals about chemical structure. This level of structural information has been lacking in previous analyses of diamond polishing debris. In addition to the non-diamond carbon found in the wear debris, significant quantities of two iron oxides, magnetite (Fe3O4) and haematite (α-Fe2O3), were also found. An interesting observation was that a transformation from magnetite to haematite could be induced either by using high power laser excitation or by frictional heating during polishing. It is suggested that some of the Raman peaks previously attributed to lonsdaleite might better be explained by the presence of these oxides.  相似文献   
72.
The potential energy curves of the rare gas dimers He2, Ne2, and Ar2 have been computed using correlation consistent basis sets ranging from singly augmented aug-cc-pVDZ sets through triply augmented t-aug-cc-pV6Z sets, with the augmented sextuple basis sets being reported herein. Several methods for including electron correlation were investigated, namely Møller—Plesset perturbation theory (MP2, MP3 and MP4) and coupled cluster theory [CCSD and CCSD(T)]. For He2 CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 7.35 cm-1 (10.58 K), with an estimated complete basis set (CBS) limit of 7.40 cm-1 (10.65 K). The latter is smaller than the 'exact' well depth (Aziz, R. A., Janzen, A. R., and Moldover, M. R., 1995, Phys. Rev. Lett., 74, 1586) by about 0.2 cm-1 (0.35 K). The Ne2 well depth, computed with the CCSD(T)/d-aug-cc-pV6Z method, is 28.31 cm-1 and the estimated CBS limit is 28.4 cm-1, approximately 1 cm-1 smaller than the empirical potential of Aziz, R. A., and Slaman, M., J., 1989, Chem. Phys., 130, 187. Inclusion of core and core—valence correlation effects has a negligible effect on the Ne2 well depth, decreasing it by only 0.04 cm-1. For Ar2, CCSD(T)/d-aug-cc-pV6Z calculations yield a well depth of 96.2 cm-1. The corresponding HFDID potential of Aziz, R. A., 1993, J. chem. Phys., 99, 4518 predicts of De of 99.7 cm-1. Inclusion of core and core-valence effects in Ar2 increases the well depth and decreases the discrepancy by approximately 1 cm-1.  相似文献   
73.
Frequency domain (FD) fluorescence lifetime data was collected for a series of 20 crude petroleum oils using a 405 nm excitation source and over a spectral range of ~426 to ~650 nm. Average fluorescence lifetimes were calculated using three different models: discrete multi-exponential, Gaussian distribution, and Lorentzian distribution. Fitting the data to extract accurate average lifetimes using the various models proved easier and less time consuming for the FD data than with Time Correlated Single Photon Counting (TCSPC) methods however the analysis of confidence intervals to the computed average lifetimes proved cumbersome for both methods. The uncertainty in the average lifetime was generally larger for the discrete lifetime multi-exponential model when compared to the distribution-based models. For the lifetime distributions, the data from the light crude oils with long lifetimes generally fit to a single decay term. Heavier oils with shorter lifetimes required multiple decay terms. The actual value for the average lifetime is more dependant on the specific fitting model employed than the data acquisition method used. Correlations between average fluorescence lifetimes and physical and chemical parameters of the crude oils were made with a view to developing a quantitative model for predicting the gross chemical composition of crude oils. It was found that there was no significant benefit gained by using FD over TCSPC other than more rapid data analysis in the FD case. For the FD data the Gaussian distribution model for fluorescence lifetime gave the best correlations with chemical composition allowing a qualitative correlation to some bulk oil parameters.
Alan G. RyderEmail:
  相似文献   
74.
A novel vinylogous Pictet–Spengler cyclization has been developed for the generation of indole‐annulated medium‐sized rings. The method enables the synthesis of tetrahydroazocinoindoles with a fully substituted carbon center, a prevalent structural motif in many biologically active alkaloids. The strategy has been applied to the total synthesis of (±)‐lundurine A.  相似文献   
75.
Matrix-assisted laser desorption ionization (MALDI) time-of-flight mass spectrometry (TOF MS) is now accepted as a quick, easy-to-use, cost-effective, and accurate technique for the identification of microorganisms. However, the successful identification of microorganisms is dependent upon careful attention to factors such as growth conditions, extraction methods, mass spectral data collection, and data analysis procedures. Currently, most microorganism identification has been limited to the species level, and only a limited number of publications have been successful in achieving strain-level identification. In this work, a “cell-free” approach is introduced where peptide analytes secreted by several Saccharomyces cerevisiae strains during their growth period are analyzed. The analysis of the cell supernatant generates mass spectral patterns that are specific to each strain. The patterns generated in combination with a robust data analysis workflow using the open-source programs MALDIquant and Mass-Up allows for strain-level identification of S. cerevisiae. The cell-free approach using the yeast supernatant to accurately identify yeast strains is presented here as a proof of concept.
Graphical Abstract
  相似文献   
76.
Contrary to some published reports, the vinyl esters of saturated fatty acids polymerize readily and rapidly. Vinyl oleate, when present in excess of 5%, and oxygen exert marked retarding effects. Techniques are described for the free-radical-initiated polymerization of the vinyl esters of caprylic, capric, lauric, myristic, palmitic, and stearic acids in bulk, dispersion, solution, and emulsion. Some data are given for polymerization in the presence of chain-transfer agents, such as carbon tetrachloride, dodecylmercaptan, and ethylbenzene. Conditions are reported for obtaining degrees of polymerization from about 2 (when chain-transfer agents are employed) to 10,000 (weight average). The weight average degree of polymerization increases markedly as the conversion increases, particularly above 80%. Even up to extremely high conversions, soluble polymers are obtained in most cases. Solubility characteristics, transition point data, molecular weights (osmometric and light-scattering), and isolation and purification techniques are also reported.  相似文献   
77.
The sorption and desorption of phenanthrene by three engineered nanoparticles including nanosize zerovalent iron (NZVI), copper (NZVC), and silicon dioxide (NSiO2) were investigated. The sorption of phenanthrene onto NSiO2 was linear and reversible due to the hydrophilic properties of NSiO2. In comparison, sorption of phenanthrene onto NZVI and NZVC was nonlinear and irreversible, which was potentially due to the existence of significantly heterogeneous surface energy distribution patterns detected by a standard molecular probe technique. Naphthalene exerted significant competitive sorption with phenanthrene for NZVI and NZVC, and the isotherm of phenanthrene changed from being significantly nonlinear to nearly linear when naphthalene was simultaneously absorbed. A surface adsorption mechanism was proposed to explain the observed sorption and competition of phenanthrene on both NZVI and NZVC. In contrast, no competition was observed for sorption onto NSiO2. The sorption of phenanthrene on all three nanoparticles significantly decreased with increasing pH. The sorption irreversibility of phenanthrene on NZVI and NZVC were significantly enhanced with decreasing pH. A pH-dependent hydrophobic effect and dipole interactions between the charged surface (electron acceptors) and phenanthrene with electron-rich pi systems (electron donors) were proposed to explain the observed pH-dependent sorption.  相似文献   
78.
A comprehensive review is presented addressing recent trends in the speciation and determination of vanadium in environmental and biological sample matrices, including important analytical aspects such as sample clean up, pre-concentration and method development. Methodology based on both separation and spectroscopic techniques for the determination of vanadium speciation is discussed. A brief outline of analytical principles, together with an overview of the recent developments and applications of vanadium speciation determination is included. The newer methods for detecting metal ions including hyphenated spectroscopic techniques and sample preparation schemes are also discussed.  相似文献   
79.
In this work, the Stöber process was applied to produce uniform silica nanoparticles (SNPs) in the meso-scale size range. The novel aspect of this work was to control the produced silica particle size by only varying the volume of the solvent ethanol used, whilst fixing the other reaction conditions. Using this one-step Stöber-based solvent varying (SV) method, seven batches of SNPs with target diameters ranging from 70 to 400 nm were repeatedly reproduced, and the size distribution in terms of the polydispersity index (PDI) was well maintained (within 0.1). An exponential equation was used to fit the relationship between the particle diameter and ethanol volume. This equation allows the prediction of the amount of ethanol required in order to produce particles of any target diameter within this size range. In addition, it was found that the reaction was completed in approximately 2 h for all batches regardless of the volume of ethanol. Structurally coloured artificial opal photonic crystals (PCs) were fabricated from the prepared SNPs by self-assembly under gravity sedimentation.  相似文献   
80.
The ability to prepare and develop novel pre-concentration media by the sol-gel process, and their integration with mid-infrared transparent waveguides has been demonstrated. This research approach resulted in a mid-infrared sensing methodology in which the properties (porosity, functionality, polarity, etc.) of the recognition layer could be tailored by variation of the sol-gel precursors and processing conditions. Cross-linker type and concentration notably influenced p-xylene absorption and diffusion rate. Unreacted silanol groups appeared to be the dominant factor in the hydrophobicity of sol-gel layers. Variation of sol-gel precursors and thermal treatment altered both film cross-link density and polarity, as demonstrated by variation in the rate of analyte diffusion and equilibrium analyte concentration. The use of a novel 1 : 1 PTMOS : DPDMS material as pre-concentration medium in this analytical sensing approach was validated through the determination of p-nitrochlorobenzene in an aqueous environment. The response demonstrated linearity between 0-30 mg L(-1) with a correlation coefficient of 0.989 and a limit of detection of 0.7 mg L(-1). Sensing times for p-nitrochlorobenzene were also reduced from several hours to 24 minutes, without loss of measurement accuracy or sensitivity, by a 10 degrees C increase in the sensing temperature and the use of a predictive Fickian model previously developed by this research group.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号