首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   3篇
化学   49篇
晶体学   2篇
力学   3篇
数学   11篇
物理学   21篇
  2023年   1篇
  2022年   7篇
  2021年   3篇
  2020年   2篇
  2019年   1篇
  2018年   5篇
  2017年   2篇
  2016年   1篇
  2015年   5篇
  2014年   2篇
  2013年   3篇
  2012年   6篇
  2011年   10篇
  2010年   2篇
  2009年   4篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   6篇
  2000年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1994年   2篇
  1987年   1篇
  1986年   1篇
排序方式: 共有86条查询结果,搜索用时 31 毫秒
31.
Building standards incorporating quantitative acoustical criteria to ensure adequate sound insulation are now being implemented. Engineers are making great efforts to design acoustically efficient double-wall structures. Accordingly, efficient simulation models to predict the acoustic insulation of double-leaf wall structures are needed. This paper presents the development of a numerical tool that can predict the frequency dependent sound reduction index R of stud based double-leaf walls at one-third-octave band frequency range. A fully vibro-acoustic 3D model consisting of two rooms partitioned using a double-leaf wall, considering the structure and acoustic fluid coupling incorporating the existing fluid and structural solvers are presented. The validity of the finite element (FE) model is assessed by comparison with experimental test results carried out in a certified laboratory. Accurate representation of the structural damping matrix to effectively predict the R values are studied. The possibilities of minimising the simulation time using a frequency dependent mesh model was also investigated. The FEA model presented in this work is capable of predicting the weighted sound reduction index Rw along with A-weighted pink noise C and A-weighted urban noise Ctr within an error of 1 dB. The model developed can also be used to analyse the acoustically induced frequency dependent geometrical behaviour of the double-leaf wall components to optimise them for best acoustic performance. The FE modelling procedure reported in this paper can be extended to other building components undergoing fluid–structure interaction (FSI) to evaluate their acoustic insulation.  相似文献   
32.
The removal of heavy metals, such as Cu(II), Cd(II) and Cr(III) from aqueous solution was studied using Chorfa silt material (Mascara, Algeria). The main constituents of silt sediment are quartz, calcite and mixture of clays. The experimental data were described using Freundlich, Langmuir, Dubinin–Radushkevich (D–R) and Langmuir–Freundlich models. The adsorbed amounts of chromium and copper ions were very high (95% and 94% of the total concentration of the metal ions), whereas cadmium ion was adsorbed in smaller (55%) amounts. The Langmuir–Freundlich isotherm model was the best to describe the experimental data. The maximum sorption capacity was found to be 26.30, 11.76 and 0.35 mg/g for Cr3+, Cu2+ and Cd2+, respectively. The results of mean sorption energy, E (kJ/mol) calculated from D–R equation, confirmed that the adsorption of copper, chromium and cadmium on silt is physical in nature.  相似文献   
33.
We report the realization of the continuous wave laser emission in the orange at 607 nm from a Pr:BaY(2)F(8) (Pr:BYF) crystal pumped by a blue GaN laser diode. A maximal output power of 78 mW is obtained in a quasi-single transverse mode beam. The effect of reabsorption losses at the laser wavelength is also evidenced.  相似文献   
34.
The antifungal drugs currently available and mostly used for the treatment of candidiasis exhibit the phenomena of toxicity and increasing resistance. In this context, plant materials might represent promising sources of antifungal agents. The aim of this study is to evaluate for the first time the chemical content of the volatile fractions (VFs) along with the antifungal and anti-biofilm of Convolvulus althaeoides L. roots. The chemical composition was determined by gas chromatography coupled to a flame ionization detector and mass spectrometry. In total, 73 and 86 chemical compounds were detected in the n-hexane (VF1) and chloroform (VF2) fractions, respectively. Analysis revealed the presence of four main compounds: n-hexadecenoic acid (29.77%), 4-vinyl guaiacol (12.2%), bis(2-ethylhexyl)-adipate (9.69%) and eicosane (3.98%) in the VF extracted by hexane (VF1). n-hexadecenoic acid (34.04%), benzyl alcohol (7.86%) and linoleic acid (7.30%) were the main compounds found in the VF extracted with chloroform (VF2). The antifungal minimum inhibitory concentrations (MICs) of the obtained fractions against Candida albicans, Candida glabrata and Candida tropicalis were determined by the micro-dilution technique and values against Candida spp. ranged from 0.87 to 3.5 mg/mL. The biofilm inhibitory concentrations (IBF) and sustained inhibition (BSI) assays on C. albicans, C. glabrata and C. tropicalis were also investigated. The VFs inhibited biofilm formation up to 0.87 mg/mL for C. albicans, up to 1.75 mg/mL against C. glabrata and up to 0.87 mg/mL against C. tropicalis. The obtained results highlighted the synergistic mechanism of the detected molecules in the prevention of candidosic biofilm formation.  相似文献   
35.
36.
Heavy atom-induced phosphorescence of organic chromophores that originates from spin?Corbit coupling (SOC) is always accompanied by fluorescence quenching concomitant with a reduction of the triplet excited state lifetime. However, such changes are typically manifest by fluorescence quenching at room temperature and phosphorescence sensitization at cryogenic temperatures. Herein we overview our efforts over the past decade in which both internal and external heavy-atom effects (HAEs) can trigger room temperature phosphorescence (RTP) with dramatic shortening of the phosphorescence radiative lifetime by several orders of magnitude. Such spectral properties render new classes of phosphorescent materials for potential use in organic light-emitting diodes (OLEDs). The molecular systems described in this paper are organic fluorophores that are ??-complexed or ??-bonded to a multinuclear d10 transition metal center, the presence of which leads to phosphorescence sensitization because of the significant SOC in such materials.  相似文献   
37.
Metallamacrocycles 1, 2, and 3 of the general formula [{Ir(ppy)(2)}(2)(μ-BL)(2)](OTf)(2) (ppyH = 2-phenyl pyridine; BL = 1,2-bis(4-pyridyl)ethane (bpa) (1), 1,3-bis(4-pyridyl)propane (bpp) (2), and trans-1,2-bis(4-pyridyl)ethylene (bpe) (3)) have been synthesized by the reaction of [{(ppy)(2)Ir}(2)(μ-Cl)(2)], first with AgOTf to effect dechlorination and later with various bridging ligands. Open-frame dimers [{Ir(ppy)(2)}(2)(μ-BL)](OTf)(2) were obtained in a similar manner by utilizing N,N'-bis(2-pyridyl)methylene-hydrazine (abp) and N,N'-(bis(2-pyridyl)formylidene)ethane-1,2-diamine (bpfd) (for compounds 4 and 5, respectively) as bridging ligands. Molecular structures of 1, 3, 4, and 5 were established by X-ray crystallography. Cyclic voltammetry experiments reveal weakly interacting "Ir(ppy)(2)" units bridged by ethylene-linked bpe ligand in 3; on the contrary the metal centers are electronically isolated in 1 and 2 where the bridging ligands are based on ethane and propane linkers. The dimer 4 exhibits two accessible reversible reduction couples separated by 570 mV indicating the stability of the one-electron reduced species located on the diimine-based bridge abp. The "Ir(ppy)(2)" units in compound 5 are noninteracting as the electronic conduit is truncated by the ethane spacer in the bpfd bridge. The dinuclear compounds 1-5 show ligand centered (LC) transitions involving ppy ligands and mixed metal to ligand/ligand to ligand charge transfer (MLCT/LLCT) transitions involving both the cyclometalating ppy and bridging ligands (BL) in the UV-vis spectra. For the conjugated bridge bpe in compound 3 and abp in compound 4, the lowest-energy charge-transfer absorptions are red-shifted with enhanced intensity. In accordance with their similar electronic structures, compounds 1 and 2 exhibit identical emissions. The presence of vibronic structures in these compounds indicates a predominantly (3)LC excited states. On the contrary, broad and unstructured phosphorescence bands in compounds 3-5 strongly suggest emissive states of mixed (3)MLCT/(3)LLCT character. Density functional theory (DFT) calculations have been carried out to gain insight on the frontier orbitals, and to rationalize the electrochemical and photophysical properties of the compounds based on their electronic structures.  相似文献   
38.
Treatment of M(allyl)(Cl)(CO)2(py)2 (M = Mo, W) with 1 equiv. of potassium pyrazolates in tetrahydrofuran at −78 °C afforded M(allyl)(R2pz)(CO)2(py)n (R2pz = 3,5-disubstituted pyrazolate; n = 1, 2) in 68-81% yields. X-ray crystal structure analyses of Mo(allyl)((CF3)2pz)(CO)2(py)2 and W(allyl)(tBu2pz)(CO)2(py) revealed η1- and η2-coordination of the (CF3)2pz and tBu2pz ligands, respectively. Analogous treatment of Mo(allyl)(Cl)(CO)2(NCCH3)2 with 1 equiv. of tBu2pzK in tetrahydrofuran at −78 °C afforded [Mo(allyl)(tBu2pz)(CO)2]2 in 79% yield. An X-ray crystal structure analysis of [Mo(allyl)(tBu2pz)(CO)2]2 showed a dimeric structure bridged by two μ-η21-tBu2pz ligands. Treatment of M(allyl)(Cl)(CO)2(py)2 with 1 equiv. of lithium 1,3-diisopropylacetamidinate or lithium 1,3-di-tert-butylacetamidinate in diethyl ether at −78 °C afforded M(allyl)(iPrNC(Me)NiPr)(CO)2(py) and M(allyl)(tBuNC(Me)NtBu)(CO)2(py), respectively, in 68-78% yields. The new complexes were characterized by spectral and analytical methods and by X-ray crystal structure determinations. M(allyl)(iPrNC(Me)NiPr)(CO)2(py) adopt pseudo-octahedral geometry about the metal centers, with the 1,3-diisopropylacetamidate ligand nitrogen atoms spanning one axial site and one equatorial site of the octahedron. By contrast, M(allyl)(tBuNC(Me)NtBu)(CO)2(py) adopt pseudo-octahedral structures in which the two 1,3-di-tert-butylacetamidinate ligand nitrogen atoms span two equatorial coordination sites. Sublimation of M(allyl)(tBuNC(Me)NtBu)-(CO)2(py) at 105 °C/0.03 Torr afforded ?7% yields of M(allyl)(tBuNC(Me)NtBu)(CO)2, along with sublimed M(allyl)(tBuNC(Me)NtBu)(CO)2(py). W(allyl)(tBuNC(Me)NtBu)(CO)2 exists in the solid state as a 16-electron complex with distorted square pyramidal geometry. Many of the new complexes undergo dynamic ligand site exchange in solution, and these processes were probed by variable temperature 1H NMR spectroscopy. The volatilities and thermal stabilities were evaluated to determine the potential of the new complexes for use as precursors in thin film growth experiments.  相似文献   
39.
In this work, a three-component reaction of 3-acetyl-4-hydroxycoumarine, malononitrile, or cyanoacetate in the presence of ammonium acetate was used to form coumarin derivatives. The chemical structures of new compounds were identified by 1H, 13C NMR and an elemental analysis. These compounds were examined in vitro for their antimicrobial activity against a panel of bacterial strains. In addition, these compounds were investigated for antioxidant activities by superoxideradical, DPPH (2,2-Diphenyl-1-picrylhydrazyl), and hydroxyl radical scavenging assays, in which most of them displayed significant antioxidant activities. Furthermore, these compounds were evaluated for anti-inflammatory activity by indirect hemolytic and lipoxygenase inhibition assays and revealed good activity. In addition, screening of the selected compounds 2–4 against colon carcinoma cell lines (HCT-116) and hepatocellular carcinoma cell lines (HepG-2) showed that that 2-amino-4-hydroxy-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)nicotinonitrile 4 exhibited good cytotoxic activity against standard Vinblastine, while the other compounds exhibited moderate cytotoxic activity. Docking simulation showed that2-amino-4-hydroxy-6-(4-hydroxy-2-oxo-2H-chromen-3-yl)nicotinonitrile 4 is an effective inhibitor of the tumor protein HCT-116. A large fluorescence enhancement in a highly acidic medium was observed, and large fluorescence quenching by the addition of traces of Cu2+ and Ni2+ was also remarked.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号