排序方式: 共有75条查询结果,搜索用时 15 毫秒
31.
Cylindrical geometry high-field asymmetric waveform ion mobility spectrometry (FAIMS) focuses and separates gas-phase ions at atmospheric pressure and room (or elevated) temperature. Addition of helium to a nitrogen-based separation medium offers significant advantages for FAIMS including improved resolution, selectivity and sensitivity. Aside from gas composition, ion transmission through FAIMS is governed by electric field strength (E/N) that is determined by the applied voltage, the analyzer gap width, atmospheric pressure and electrode temperature. In this study, the analyzer width of a cylindrical FAIMS device is varied from 2.5 to 1.25 mm to achieve average electric field strengths as high as 187.5 Townsend (Td). At these electric fields, the performance of FAIMS in an N(2) environment is dramatically improved over a commercial system that uses an analyzer width of 2.5 mm in 1:1 N(2) /He. At fields of 162 Td using electrodes at room temperature, the average effective temperature for the [M+2H](2+) ion of angiotensin II reaches 365 K. This has a dramatic impact on the curtain gas flow rate, resulting in lower optimum flows and reduced turbulence in the ion inlet. The use of narrow analyzer widths in a N(2) carrier gas offers previously unattainable baseline resolution of the [M+2H](2+) and [M+3H](3+) ions of angiotensin II. Comparisons of absolute ion current with FAIMS to conventional electrospray ionization (ESI) are as high as 77% with FAIMS versus standard ESI-MS. 相似文献
32.
The hydrothermal reactions of a vanadium source, an appropriate diphosphonate ligand, and water in the presence of HF provide a series of compounds with neutral V-P-O networks as the recurring structural motif. When the {O3P(CH2)(n)PO3}4- diphosphonate tether length n is 2-5, metal-oxide hybrids of type 1, [V2O2(H2O){O3P(CH2)(n)PO3}] x xH2O, are isolated. The type 1 oxides exhibit the prototypical three-dimensional (3-D) "pillared" layer architecture. When n is increased to 6-8, the two-dimensional (2-D) "pillared" slab structure of the type 2 oxides [V2O2(H2O)4{O3P(CH2)6PO3}] is encountered. Further lengthening of the spacer to n = 9 provides another 3-D structure, type 3, constructed from the condensation of pillared slabs to give V-P-O double layers as the network substructure. When organic cations are introduced to provide charge balance for anionic V-P-O networks, oxides of types 4-7 are observed. For spacer length n = 3, a range of organodiammonium cations are accommodated by the same 3-D "pillared" layer oxovanadium diphosphonate framework in the type 4 materials [H3N(CH2)(n)NH3][V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [n = 2, x = 6 (4a); n = 3, x = 3 (4b); n = 4, x = 2 (4c); n = 5, x = 1 (4d); n = 6, x = 0.5 (4e); n = 7, x = 0 (4f)] and [H3NR]y[V4O4(OH)2 {O3P(CH)3PO3}2] x xH2O [R = -CH2(NH3)CH2CH3, y = 1, x = 0 (4g); R = -CH3, n = 2, x = 3 (4h); R = -CH2CH3, y = 2, x = 1 (4i); R = -CH2CH2CH3, y = 2, x = 0 (4j); cation = [H2N(CH2CH3)2], y = 2, x = 0 (4k)]. These oxides exhibit two distinct interlamellar domains, one occupied by the cations and the second by water of crystallization. Furthermore, as the length of the cation increases, the organodiammonium component spills over into the hydrophilic domain to displace the water of crystallization. When the diphosphonate tether length is increased to n = 5, structure type 5, [H3N(CH2)2NH3][V4O4(OH)2(H2O){O3P(CH2)5PO3}2] x H2O, is obtained. This oxide possesses a 2-D "pillared" network or slab structure, similar in gross profile to that of type 2 oxides and with the cations occupying the interlamellar domain. In contrast, shortening the diphosphonate tether length to n = 2 results in the 3-D oxovanadium organophosphonate structure of the type 7 oxide [H3N(CH2)5NH3][V3O3{O3P(CH2)2PO3}2]. The ethylenediphosphonate ligand does not pillar V-P-O networks in this instance but rather chelates to a vanadium center in the construction of complex polyhedral connectivity of 7. Substitution of piperazinium cations for the simple alkyl chains of types 4, 5, and 7 provides the 2-D pillared layer structure of the type 6 oxides, [H2N(CH2CH2)NH2][V2O2{O3P(CH)(n)PO3H}2] [n = 2 (6a); n = 4 (6b); n = 6 (6c)]. The structural diversity of the system is reflected in the magnetic properties and thermal behavior of the oxides, which are also discussed. 相似文献
33.
Ouellette W Prosvirin AV Chieffo V Dunbar KR Hudson B Zubieta J 《Inorganic chemistry》2006,45(23):9346-9366
Hydrothermal reactions of 1,2,4-triazole with the appropriate copper salt have provided eight structurally unique members of the Cu/triazolate/X system, with X = F-, Cl-, Br-, I-, OH-, and SO4(2-). The anionic components X of [Cu3(trz)4(H2O)3]F2 (1) and [Cu6(trz)4Br]Cu4Br4(OH) (4) do not participate in the framework connectivity, acting as isolated charge-compensating counterions. In contrast, the anionic subunits X of [Cu(II)Cu(I)(trz)Cl2] (2), [Cu6(trz)4Br2] (3), [Cu(II)Cu(I)(trz)Br2] (5), [Cu3(trz)I2] (6), [Cu6(II)Cu2(I)(trz)6(SO4)3(OH)2(H2O)] (8), and [Cu4(trz)3]OH.7.5H2O (9.7.5H2O) are intimately involved in the three-dimensional connectivities. The structure of [Cu(II)Cu(I)(trz)2][Cu3(I)I4] (7) is constructed from two independent substructures: a three-dimensional cationic {Cu2(trz)2}n(n+) component and {Cu3I4}n(n-) chains. Curiously, four of the structures are mixed-valence Cu(I)/Cu(II) materials: 2, 5, 7, and 8. The only Cu(II) species is 1, while 3, 4, 6, and 9.7.5H2O exhibit exclusively Cu(I) sites. The magnetic properties of the Cu(II) species 1 and of the mixed-valence materials 5, 7, 8, and the previously reported [Cu3(trz)3OH][Cu2Br4] have been studied. The temperature-dependent magnetic susceptibility of 1 conforms to a simple isotropic model above 13 K, while below this temperature, there is weak ferromagnetic ordering due to spin canting of the antiferromagnetically coupled trimer units. Compounds 5 and 7 exhibit magnetic properties consistent with a one-dimensional chain model. The magnetic data for 8 were fit over the temperature range 2-300 K using the molecular field approximation with J = 204 cm(-1), g = 2.25, and zJ' = -38 cm(-1). The magnetic properties of [Cu3(trz)3OH][Cu2Br4] are similar to those of 8, as anticipated from the presence of similar triangular {Cu3(trz)3(mu3-OH)}(2+) building blocks. The Cu(I) species 3, 4, 6, and 9 as well as the previously reported [Cu(5)(trz)3Cl2] exhibit luminescence thermochromism. The spectra are characterized by broad emissions, long lifetimes, and significant Stokes' shifts, characteristic of phosphorescence. 相似文献
34.
Hydrothermal reactions of solutions containing a vanadate source, an organodiphosphonate, an organonitrogen component, and HF (V/P/O/F) yield a series of oxyfluorovanadium-diphosphonates with charge-compensation provided by organoammonium cations or hydronium cations. While V/P/O/F networks provide the recurrent structural motif, the linkage between the layers and the details of the polyhedral connectivities within the layers are quite distinct for the five structures of this study. [H2pip][V4F4O2(H2O)2{O3P(CH2)3PO3}2] (1) (pip = piperazine) is a conventional three-dimensional (3D) "pillared" layer structure, whose V/P/O/F networks are buttressed by the propylene chains of the diphosphonate ligands. In contrast, [H2en][V2O2F2(H2O)2{O3P(CH2)4PO3}] (2) and [H2en]2[V6F12(H2O)2{O3P(CH2)5PO3}2 {HO3P(CH2)5PO3H}] (3) are two-dimensional (2D) slablike structures constructed of pairs of V/P/O/F networks sandwiching the pillaring organic tethers of the diphosphonate ligands. Despite the common overall topology, the layer substructures are quite different: isolated {VO5F} octahedra in 2 and chains of corner-sharing {VO(3)F(3)} octahedra in 3. The 3D structure of [H2en]2[V7O6F4(H2O)2{O3P(CH2)2PO3}4].7H2O (4.7H2O) exhibits a layer substructure that contains the ethylene bridges of the diphosphonate ligands and are linked through corner-sharing octahedral {VO6} sites. The connectivity requirements provide large channels that enclose readily removed water of crystallization. The structure of [H3O][V3F2(H2O)2{O3P(CH2)2PO3}2].3.5H2O (5.3.5H2O) is also 3D. Because of the similiarity with 4.7H2O, it exhibits V/P/O/F layers that include the organic tethers of the diphosphonates and are linked through corner-sharing {VO6} octahedra. In contrast to the network substructure of 4.7H2O, which contains binuclear and trinuclear vanadium clusters, the layers of 5.3.5 H2O are constructed from chains of corner-sharing {VO4F2} octahedra. Thermal studies of the open framework materials 4 and 5 reveal that incorporation of fluoride into the inorganic substructures provides robust scaffoldings that retain their crystallinity to 450 degrees C and above. In the case of 4, dehydration does not change the powder X-ray diffraction pattern of the material, which remains substantially unchanged to 450 degrees C. In the case of 5, there are two dehydration steps, that is, the higher temperature process associated with loss of coordinated water. This second dehydration results in structural changes as monitored by powder X-ray diffraction, but this new phase is retained to ca. 450 degrees C. The materials of this study exhibit a range of reduced oxidation states: 1 is mixed valence V(IV)/V(III) while 2 and 4.7H(2)O are exclusively V(IV) and 3 and 5.3.5H2O are exclusively V(III). These oxidation states are reflected in the magnetic properties of the materials. The paramagnetism of 1 arises from the presence of V(III) and V(IV) sites and conforms to the Curie-Weiss law with C = 2.38 em K/(Oe mol) and = -66 K with mu(eff) (300 K) = 4.33 mu(B). Compounds 3-5 exhibit Curie-Weiss law dependence of magnetism on temperature with mu(eff) (300 K) = 5.45 mu(B) for 3 (six V(III) sites), mu(eff) = 4.60 mu(B) for 4 (seven V(IV) sites) and mu(eff) = 4.13 mu(B) for 5 (two V(III) sites). Compound 2 exhibits antiferromagnetic interactions, and the magnetism may be described in terms of the Heisenberg linear antiferromagnetic chain model for V(IV). The effective magnetic moment at 300 K is 2.77 mu(B) (two V(IV) sites). 相似文献
35.
Nicholas T. Ouellette Eberhard Bodenschatz Haitao Xu 《Journal of statistical physics》2011,145(1):93-101
By tracking tracer particles at high speeds and for long times, we study the geometric statistics of Lagrangian trajectories in an intensely turbulent laboratory flow. In particular, we consider the distinction between the displacement of particles from their initial positions and the total distance they travel. The difference of these two quantities shows power-law scaling in the inertial range. By comparing them with simulations of a chaotic but non-turbulent flow and a Lagrangian Stochastic model, we suggest that our results are a signature of turbulence. 相似文献
36.
Adrian S. Culf Jennifer A. Melanson Rodney J. Ouellette Glen G. Briand 《Tetrahedron letters》2012,53(26):3301-3304
This Letter details the particular use of salicylaldehyde (2-hydroxybenzaldehyde) for the regiospecific protection of primary amines in a representative polyamine, norspermidine (N-(3-aminopropyl)propane-1,3-diamine) under mild reaction conditions in high yield. The lack of intramolecular hexahydropyrimidine formation allowed for subsequent N2-acylation and N2-alkylation reactions, typical of polyamine synthetic strategies. 相似文献
37.
38.
39.
40.
Transonic trailing-edge flow 总被引:1,自引:0,他引:1
Bodonyi RJ; Kluwick A 《The Quarterly Journal of Mechanics and Applied Mathematics》1998,51(2):297-310