首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   661篇
  免费   19篇
  国内免费   1篇
化学   332篇
晶体学   1篇
力学   5篇
数学   42篇
物理学   301篇
  2023年   8篇
  2020年   9篇
  2019年   12篇
  2018年   7篇
  2017年   5篇
  2016年   15篇
  2015年   14篇
  2014年   10篇
  2013年   19篇
  2012年   26篇
  2011年   39篇
  2010年   20篇
  2009年   17篇
  2008年   37篇
  2007年   15篇
  2006年   24篇
  2005年   15篇
  2004年   20篇
  2003年   11篇
  2001年   5篇
  2000年   21篇
  1999年   4篇
  1998年   5篇
  1997年   12篇
  1996年   10篇
  1995年   15篇
  1994年   14篇
  1993年   15篇
  1992年   17篇
  1991年   11篇
  1990年   18篇
  1989年   12篇
  1988年   6篇
  1987年   10篇
  1986年   14篇
  1985年   16篇
  1984年   8篇
  1983年   4篇
  1982年   5篇
  1981年   10篇
  1980年   9篇
  1979年   8篇
  1978年   5篇
  1977年   9篇
  1975年   7篇
  1974年   5篇
  1973年   5篇
  1971年   7篇
  1963年   4篇
  1885年   4篇
排序方式: 共有681条查询结果,搜索用时 15 毫秒
21.
22.
23.
Assignments of I, π, T are made to 30 levels in 32S between 7.35 and 11.76 MeV excitation energy, making the spectroscopy of the T= 0 states rather complete up to 10 MeV and that of the T = 1 states up to 12 MeV. A reassessment of existing data in the light of the new results clarifies the spectrum of I π = 1+, T = 1 states up to 15 MeV excitation energy. High-spin states (I = 52 - 7) below 10 MeV excitation energy have been investigated by n t γ angular-correlation measurements with the 29Si(α, nγ) reaction at E α 14.4 MeV. Five g-wave resonances of the 31P(p, γ) reaction, leading to the formation of I π + 4+, 5+ states in 32S, have been identified between 10 and 12 MeV excitation energy. The spectrum of T = 1 states between 10.7 and 12 MeV, has been investigated by measurements of γ-ray angular distributions on resonances of the 31P(p, γ) reaction and by measurements of resonance strengths. Several 32S levels between 7.35 and 8.75 MeV excitation energy were studied as final states in resonance decays. Finally a search was performed for I π = 0+ resonances of the 28Si(α, γ) reaction.  相似文献   
24.
We present a new theory for the gravitational-wave signatures of core-collapse supernovae. Previous studies identified axisymmetric rotating core collapse, core bounce, postbounce convection, and anisotropic neutrino emission as the primary processes and phases for the radiation of gravitational waves. Our results, which are based on axisymmetric Newtonian supernova simulations, indicate that the dominant emission process of gravitational waves in core-collapse supernovae may be the oscillations of the protoneutron star core. The oscillations are predominantly of mode character, are excited hundreds of milliseconds after bounce, and typically last for several hundred milliseconds. Our results suggest that even nonrotating core-collapse supernovae should be visible to current LIGO-class detectors throughout the Galaxy, and depending on progenitor structure, possibly out to megaparsec distances.  相似文献   
25.
26.
27.
A neutron waveguide is a three-layer structure in which a guiding layer with low optical potential is placed between two cladding layers with high optical potential. Under proper operation conditions, the neutron density is resonantly enhanced inside the guiding layer. In our experimental scheme, the neutron beam enters through the surface of the top layer at glancing angle and goes out from the edge of the guiding layer, with an angular distribution corresponding to Fraunhofer diffraction from a narrow slit. The incident neutron beam is relatively wide (0.1 mm) and highly collimated (0.01°). The outgoing sub-micron beam is extremely narrow at the outlet (0.1 μm) and more divergent (0.1°). So far only the production of unpolarized sub-micron neutron beams has been reported. Here we present first experiments on polarized sub-micron neutron beams. For these studies a polarized incident beam was used and two types of magnetic waveguides were investigated: a polarizing magnetic waveguide Fe(20 nm)/Cu(140 nm)/Fe(50 nm)//glass and a non-polarizing magnetic waveguide Py(10 nm)/Al(140 nm)/Py(50 nm)//glass (Py is permalloy). The waveguide samples were characterized by polarized neutron reflectometry.  相似文献   
28.
μ+ SR-measurements in transversally applied magnetic fields of 2000 G and 4000 G on heavy-electron single crystal U2Zn17 are presented. They reveal that at least two types of interstitial sites are occupied by the positive muons. One of these sites (1/3, 2/3, 5/6) could be identified via induced local dipolar fields which aboveT N=9.7 K can exactly be derived from the magnetic susceptibility. The corresponding component of the μ+-signal exhibits a steplike decrease by about 40% atT N which is caused by the onset of a very broad distribution of static internal magnetic fields (ΔB≈1000 G) with zero average. Such a field distribution is in distinct contrast to dipolar-field calculations performed for the simple antiferromagnetic structure deduced from neutron diffraction. The remaining 60% of the muons contributing to this component belowT N are subject to a narrow static field distribution (ΔB≈1 G). The induced dipolar fields at the site (1/3, 2/3, 5/6) are temperature-independent belowT N. A weak dipolar coupling to the U-moments renders similar observations for muons occupying the second type of interstitial impossible.  相似文献   
29.
A polycrystalline smaple of nonstoichiometric ytterbium phosphide, YbP0.84, was investigated by neutron scattering, Mössbauer spectroscopy and bulk magnetic measurements. Neutron diffraction experiments prove the existence of antiferromagnetic type II ordering belowT N =0.64 K, in contrast to the observed antiferromagnetic type III ordering in the stoichiometric Kondo-like compounds YbN and YbAs. The temperature dependence of the average ordered magnetic moment per Yb3+ ion with saturation value Yb = 1.03(7) B is similar to that of YbN. Mössbauer experiments prove the magnetic phase transition to be first order with different regions in the sample having slightly different transition temperatures. By means of inelastic neutron scattering the crystal-field level scheme was established to be 6 8(19meV) – 7(43meV).  相似文献   
30.
We review various methods in the investigation of magnetic films with neutrons, including those based on the effects of Larmor precession, Zeeman spatial splitting of the beam, neutron spin resonance, and polarized neutron channeling. The underlying principles, examples of the investigated systems, specific features, applications, and perspectives of these methods are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号