首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   129篇
  免费   14篇
化学   136篇
物理学   7篇
  2024年   1篇
  2022年   1篇
  2021年   6篇
  2020年   1篇
  2019年   3篇
  2018年   1篇
  2017年   3篇
  2016年   7篇
  2015年   6篇
  2014年   3篇
  2013年   9篇
  2012年   7篇
  2011年   7篇
  2010年   3篇
  2009年   2篇
  2008年   17篇
  2007年   15篇
  2006年   8篇
  2005年   15篇
  2004年   6篇
  2003年   8篇
  2002年   6篇
  1997年   2篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1988年   1篇
  1979年   1篇
  1978年   1篇
排序方式: 共有143条查询结果,搜索用时 15 毫秒
141.
The reactions of XSeSX, XSeSY, and YSeSX (X, Y = CH3, NH2, OH, F) with F? and CN? nucleophiles have been investigated by means of B3PW91/6‐311+G(2df,p) and G4 calculations. In systems where the two substituents are not identical (XSeSY), the more stable of the two possible isomers corresponds to those in which the most electronegative substituent is attached to Se. Nucleophilic attack takes place at Se, independent of the nature of the nucleophile, with the only exception being XSeSF (X = CH3, NH2, OH), in which case the attack occurs at S. In agreement with recent results for disulfide and diselenide linkages, the mechanisms leading to Se—S bond cleavage are not always the more favorable ones because for highly electronegative substituents the most favorable process is fission of the chalcogen‐substituent bond. These dissimilarities in the observed reactivity pattern as a function of the electronegativity of the substituents are due to the fact that the σ‐type Se—S antibonding orbital, which for low‐electronegative substituents is the lowest unnoccupied molecular orbital (LUMO), becomes strongly destabilized when the electronegativity of the substituent increases, and is replaced by an antibonding π‐type Se‐X (or S‐X) orbital. In contrast, however, with what has been found for disulfide and diselenide derivatives, the observed reactivity does not change with the nature of the nucleophile. The activation strain model provides interesting insight into these processes, showing that in most cases the activation barriers are the consequence of subtle differences in the strain or in the interaction energies. © 2013 Wiley Periodicals, Inc.  相似文献   
142.
The association of BeX2 (X: H, F, Cl) derivatives with azoles leads to a dramatic increase of their intrinsic acidity. Hence, whereas 1H‐tetrazole can be considered as a typical N base in the gas phase, the complex 1H‐tetrazole–BeCl2 is predicted to be, through the use of high‐level G4 ab initio calculations, a nitrogen acid stronger than perchloric acid. This acidity enhancement is due to a more favorable stabilization of the deprotonated species after the beryllium bond is formed, because the deprotonated anion is a much better electron donor than the neutral species. Consequently, this is a general phenomenon that should be observed for any Lewis base, including those in which the basic site is a hydroxy group, an amino group, a carbonyl group, an aromatic N atom, a second‐row atom, or the π system of unsaturated hydrocarbons. The consequence is that typical bases like aniline or formamide lead to BeX2 complexes that are stronger acids than phosphoric or chloric acids. Similarly, water, methanol, and SH2 become stronger acids than sulfuric acid, pyridine becomes a C acid almost as strong as acetic acid, and unsaturated hydrocarbons such as ethylene and acetylene become acids as strong as nitric and sulfuric acids, respectively.  相似文献   
143.
Cyanoacetaldehyde (NC? CH2CH?O) and its isomer, cyanovinylalcohol (NC? CH?CH? OH), as possible components of the interstellar medium, comets, or planetary atmospheres, exist in equilibrium in the gas phase, although the latter compound is very much in the minority (2 %). The recording and analysis of the gas‐phase infrared spectrum of the former compound within the 4000–500 cm?1 spectroscopic range and the potential presence of the latter isomer, which could be vital for their detection in these media, are reported. CCSD(T) and G4 high‐level ab initio methods, as well as density functional theory calculations, predict the existence of two stable rotamers of cyanoacetaldehyde. The global minimum has a structure with an unusual O‐C‐C‐C dihedral angle (150°) that falls between the antiperiplanar (180°) and anticlinal forms (120°). The second rotamer, which is about 4.0 kJ mol?1 less stable in terms of free energy, has a planar structure that corresponds to the synperiplanar form (O‐C‐C‐C dihedral angle: 0°). The absorption vibrational bands of the two aldehyde rotamers that are present in the mixture lead to a spectrum with a very complex structure in the region of deformation movements, in which several low‐intensity bands overlap. A complete and unambiguous assignment of the experimental spectrum has been achieved by using the calculated harmonic and anharmonic vibrational frequencies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号