首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1858篇
  免费   33篇
  国内免费   22篇
化学   1519篇
晶体学   16篇
力学   16篇
数学   85篇
物理学   277篇
  2022年   10篇
  2021年   23篇
  2020年   20篇
  2019年   16篇
  2018年   17篇
  2017年   12篇
  2016年   22篇
  2015年   18篇
  2014年   33篇
  2013年   63篇
  2012年   95篇
  2011年   99篇
  2010年   68篇
  2009年   76篇
  2008年   105篇
  2007年   113篇
  2006年   115篇
  2005年   131篇
  2004年   113篇
  2003年   102篇
  2002年   88篇
  2001年   28篇
  2000年   18篇
  1999年   34篇
  1998年   31篇
  1997年   21篇
  1996年   36篇
  1995年   20篇
  1994年   12篇
  1993年   11篇
  1992年   16篇
  1991年   15篇
  1990年   8篇
  1989年   17篇
  1988年   16篇
  1987年   14篇
  1985年   18篇
  1984年   24篇
  1983年   9篇
  1982年   26篇
  1981年   25篇
  1980年   14篇
  1979年   24篇
  1978年   18篇
  1977年   28篇
  1976年   16篇
  1975年   14篇
  1974年   14篇
  1973年   14篇
  1971年   5篇
排序方式: 共有1913条查询结果,搜索用时 0 毫秒
61.
High-resolution electron microscopy (HREM) has been used to image the surface structure of nano- and micrometer-sized synthetic crystals of zeolite-Linde-L (LTL). Columnar holes and rotational, nano-sized, wheel-like defects were observed within the crystals, where the hole has a minimum size equal to that of the rotational defect. Predictions of surface structure from atomistic computer simulation concur with the observations from HREM and provide insight into the crystal growth mechanism of perfect and defective LTL. Analysis of the energetics of the formation of rotational defect structures reveals that the driving force for defect creation is thermodynamic and furthermore, the rotational defects could be created in high concentrations. Formation of a columnar hole is found to be slightly energetically unfavourable and therefore we speculate that the incidence of both rotational and nano-sized vacancy defects is strongly dependent on kinetic factors and reaction conditions. The morphology of nano- and microcrystalline LTL is contradistinct and we use insights from simulation to propose an explanation of the disparity in crystal shape.  相似文献   
62.
Heck coupling reaction of iodobenzene and styrene proceeds rapidly and selectively in supercritical water even without any catalyst in the presence of base. Both the choice of base and the reaction conditions had a significant effect on the conversion and the selectivity of the coupling products. The addition of a relatively mild base such as potassium acetate facilitated the cross-coupling reaction, while the hydrolysis of phenyl halide was favored in the presence of a strong base. The conversion and the yields of coupling products increased with increasing temperature, reaching a maximum at 650 K near the critical temperature of water, and then decreased as the temperature was further increased. Water density had a significant influence on the reaction rate, showing nearly 30% augmentation with a slight increase in density from 0.45 to 0.56 g cm(-3), but had less effect on the product selectivity. Two possibilities of the role of water responsible for the noncatalytic Heck coupling reaction in supercritical water, that is, ion and water-catalyzed mechanisms have been considered.  相似文献   
63.
Osamu Hirata  Seiji Shinkai 《Tetrahedron》2004,60(49):11211-11218
Porphyrin derivatives bearing a pair of boronic acid groups (1, 1·Zn, and 1·Cu) were designed and synthesized from 2 to construct a saccharide sensing system. Compounds 1, 1·Zn, and 1·Cu have a diethynyl porphyrin rotational axis, which is expected to act as a saccharide-binding modulator. Saccharide binding studies were conducted by UV-vis, fluorescence, and circular dichroism (CD) spectroscopies. In a water-methanol 1:1 (v/v) mixed solvent, we have found that 1·Zn can bind mono- and oligosaccharides including Lewis oligosaccharides to produce 1:1 host-saccharide complexes with the association constants of 102−103 M−1 range. This paper thus demonstrates a new principle to design a boronic acid-based saccharide receptor.  相似文献   
64.
The piperidine alkaloid (–)-allosedamine ( 1 ) has been synthesized, in 21% overall yield, in nine steps starting from the formyl-ester 4 . The synthesis features the reaction cascade 7 → 3 → 2 , involving asymmetric electrophilic enolate hydroxyamination, hydroxylamine/aldehyde condensation, and nitrone/styrene cycloaddition, as well as the reductive N/O cleavage-decyanation 12 → 1 .  相似文献   
65.
Magnetic and dielectric properties have been tuned simultaneously by external stimuli with rapid and sensitive response, which is crucial to monitor the magnetic state via capacitive measurement. Herein, positive charged FeII ions were linked via negative charged [(Tp)FeIII(CN)3]? (Tp=hydrotris(pyrazolyl)borate) units to form a neutral chain. The spin‐crossover (SCO) on FeII sites could be sensitively triggered via thermal treatment, light irradiation, and pressure. SCO switched the spin state of the FeII ions and antiferromagnetic interactions between FeIII and FeII ions, resulting in significant change in magnetization. Moreover, SCO induced rotation of negative charged [(Tp)FeIII(CN)3]? units, generating dielectric anomaly due to geometric change of charges distribution. This work provides a rational way to manipulate simultaneous variations in magnetic and dielectric properties utilizing SCO as an actuator to tune spin arrangement, magnetic coupling, and charge distribution.  相似文献   
66.
The spontaneous unimolecular dissociation reaction of methyl lactate (1) ionized by electron impact was investigated by a combination of mass-analyzed ion kinetic energy spectrometry and deuterium labeling. The metastable ions 1 decompose in a variety of ways: four fragment peaks are observed at m/z 89, 76, 61, and 45, which correspond to the losses of ?H3, CO, CH3?O, and ?OOCH3, respectively. Double hydrogen atom transfer occurs in the third reaction. The source-generated m/z 61 ions decompose into oxygen-protonated methanols at m/z 33 ([CH3OH 2 + ]) by the loss of CO with double hydrogen atom migration. Both hydroxyl and methyne hydrogen atoms in 1 are present in the resultant protonated methanols.  相似文献   
67.
Nonprotected carbohydrates: The catalytic regioselective thiocarbonylation of carbohydrates by using organotin dichloride under mild conditions was demonstrated. The reaction afforded various deoxy saccharides in high yields and excellent regioselectivity in a minimum number of steps. The regioselectivity of the thiocarbonylation is attributed to the intrinsic character of the carbohydrates based on the stereorelationship of their hydroxy groups (see scheme).  相似文献   
68.
Natural-chlorophyll-related porphyrins, including (2H, Zn, Cu)-protoporphyrin IX (Por-1) and Zn-mesoporphyrin IX (Por-2), and chlorins, including chlorin e? (Chl-1), chlorin e? (Chl-2), and rhodin G? (Chl-3), have been used in dye-sensitized solar cells (DSSCs). For porphyrin sensitizers that have vinyl groups at the β-positions, zinc coordinated Por-1 gives the highest solar-energy-to-electricity conversion efficiency (h) of up to 2.9%. Replacing the vinyl groups of ZnPor-1 with ethyl groups increases the open-circuit voltage (V(oc)) from 0.61 V to 0.66 V, but decreases the short-circuit current (J(sc)) from 7.0 mA·cm?2 to 6.1 mA·cm?2 and the value of h to 2.8%. Density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations suggest that the higher J(sc) values of Zn-based porphyrin sensitizers result from the favorable electron injection from the LUMO at higher energy levels. In the case of the chlorin sensitizers, the number of carboxyl protons has a large effect on the photovoltaic performance. Chl-2 with two carboxyl protons gives much higher values of J(sc), V(oc), and h than does Chl-1 with three carboxyl protons. Replacing the protons of Chl-1 with sodium ions can substantially improve the photovoltaic performance of Chl-1-based solar cells. Furthermore, the sodium salt of Chl-3 with an aldehyde group at the C7 position shows poorer photovoltaic performance than does the sodium salt of Chl-1 with methyl groups at the C7 position. This is due to the low light-harvesting capability of Chl-3.  相似文献   
69.
Pairing limited proteolysis and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) to probe clostridial collagenase collagen binding domain (CBD) reveals the solution dynamics and stability of the protein, as these factors are crucial to CBD effectiveness as a drug-delivery vehicle. MS analysis of proteolytic digests indicates initial cleavage sites, thereby specifying the less stable and highly accessible regions of CBD. Modulation of protein structure and stability upon metal binding is shown through MS analysis of calcium-bound and cobalt-bound CBD proteolytic digests. Previously determined X-ray crystal structures illustrate that calcium binding induces secondary structure transformation in the highly mobile N-terminal arm and increases protein stability. MS-based detection of exposed residues confirms protein flexibility, accentuates N-terminal dynamics, and demonstrates increased global protein stability exported by calcium binding. Additionally, apo- and calcium-bound CBD proteolysis sites correlate well with crystallographic B-factors, accessibility, and enzyme specificity. MS-observed cleavage sites with no clear correlations are explained either by crystal contacts of the X-ray crystal structures or by observed differences between Molecules A and B in the X-ray crystal structures. The study newly reveals the absence of the βA strand and thus the very dynamic N-terminal linker, as corroborated by the solution X-ray scattering results. Cobalt binding has a regional effect on the solution phase stability of CBD, as limited proteolysis data implies the capture of an intermediate-CBD solution structure when cobalt is bound.  相似文献   
70.
1,2- Or 1,3-asymmetric induction in the iodocarbocyclization reaction of 4-pentenylmalonate derivatives having a stereogenic center at an allylic or a homoallylic position has been investigated. The iodocarbocyclization reactions of 3-oxy-4-pentenylmalonate derivatives proceeded with high cis-selectivity through stereoelectronic control of the oxygenated substituent at an allylic position. In the reaction of (S)-2-siloxy-4-pentenylmalonate, an excellent diastereoselectivity was achieved through the utilization of double stereodifferentiation with a chiral titanium catalyst. Furthermore, as an application of the present reaction, the asymmetric syntheses of cyclosarkomycin and a synthetic intermediate of brefeldin A from optically pure 2- and 3-oxy-4-pentenylmalonate derivatives are also described.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号