首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   527篇
  免费   11篇
化学   311篇
力学   12篇
数学   73篇
物理学   142篇
  2023年   7篇
  2022年   7篇
  2021年   12篇
  2020年   13篇
  2019年   6篇
  2018年   6篇
  2017年   9篇
  2016年   17篇
  2015年   18篇
  2014年   23篇
  2013年   35篇
  2012年   32篇
  2011年   28篇
  2010年   16篇
  2009年   17篇
  2008年   32篇
  2007年   27篇
  2006年   33篇
  2005年   27篇
  2004年   26篇
  2003年   12篇
  2002年   12篇
  2001年   8篇
  2000年   5篇
  1999年   10篇
  1998年   2篇
  1997年   8篇
  1996年   5篇
  1995年   9篇
  1994年   8篇
  1993年   6篇
  1992年   10篇
  1991年   5篇
  1990年   4篇
  1989年   2篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1983年   2篇
  1982年   2篇
  1980年   4篇
  1975年   2篇
  1973年   1篇
  1970年   4篇
  1969年   1篇
  1911年   1篇
  1906年   3篇
  1905年   3篇
  1904年   1篇
  1903年   1篇
排序方式: 共有538条查询结果,搜索用时 15 毫秒
121.
We have studied the interaction of vapor-deposited Al, Cu, Ag, and Au atoms on a methoxy-terminated self-assembled monolayer (SAM) of HS(CH(2))(16)OCH(3) on polycrystalline Au[111]. Time-of-flight secondary ion mass spectrometry, infrared reflection spectroscopy, and X-ray photoelectron spectroscopy measurements at increasing coverages of metal show that for Cu and Ag deposition at all coverages the metal atoms continuously partition into competitive pathways: penetration through the SAM to the S/substrate interface and solvation-like interaction with the -OCH(3) terminal groups. Deposited Au atoms, however, undergo only continuous penetration, even at high coverages, leaving the SAM "floating" on the Au surface. These results contrast with earlier investigations of Al deposition on a methyl-terminated SAM where metal atom penetration to the Au/S interface ceases abruptly after a approximately 1:1 Al/Au layer has been attained. These observations are interpreted in terms of a thermally activated penetration mechanism involving dynamic formation of diffusion channels in the SAM via hopping of alkanethiolate-metal (RSM-) moieties across the surface. Using supporting quantum chemical calculations, we rationalized the results in terms of the relative heights of the hopping barriers, RSAl > RSAg, RSCu > RSAu, and the magnitudes of the metal-OCH(3) solvation energies.  相似文献   
122.
123.
In this work, the effect of Fento’s reagent on the degradation of residual Kraft black liquor was investigated. The effect of Fenton’s reagent on the black liquor degradation was dependent on the concentration of H2O2. At low concentrations (5 and 15 mM) of H2O2, Fenton’s reagent caused the degradation of phenolic groups (6.8 and 44.8%, respectively), the reduction of reaction medium pH (18.2%), and the polymerization of black liquor lignin. At a high concentration (60 mM) of H2O2, Fenton’s reagent induced an extensive degradation of lignin (95–100%) and discoloration of the black liquor. In the presence of traces of iron, the addition of H2O2 alone induced mainly lignin fragmentation. In conclusion, Fenton’s reagent and H2O2 alone can degrade residual Kraft black liquor under acidic conditions at room temperature.  相似文献   
124.
125.
126.
The crossing number of a graph G is the least number of crossings over all possible drawings of G. We present a structural characterization of graphs with crossing number one.  相似文献   
127.
128.
Journal of Solid State Electrochemistry - A novel label-free photoelectrochemical immunosensor was developed for the determination of prostate-specific antigen (PSA) based on fluorine-doped tin...  相似文献   
129.
This study investigates two lanthanide compounds (La3+ and Sm3+) obtained in water/ethyl alcohol solutions employing the anionic surfactant diphenyl-4-amine sulfonate (DAS) as ligand. Both sulfonates were characterized through IR, TG/DTG (O2 and N2). The thermal treatment of both compounds at 1273 K under air leaves residues containing variable percentages of lanthanide oxysulfide/oxysulfate phases shown by synchrotron high-resolution XRD pattern including the Rietveld analysis. The phase distributions found in the residues evidence the differences in the relative stability of the precursors.  相似文献   
130.
Understanding how spin information is transmitted from paramagnetic to non-magnetic centers is crucial in advanced materials research and calls for novel interpretive tools. Herein, we show that the spin density at a point may be seen as determined by a local source function for such density, operating at all other points of space. Integration of the local source over Bader''s quantum atoms measures their contribution in determining the spin polarization at any system''s location. Each contribution may be then conveniently decomposed in a magnetic term due to the magnetic natural orbital(s) density and in a reaction or relaxation term due to the remaining orbitals density. A simple test case, 3B1 water, is chosen to exemplify whether an atom or group of atoms concur or oppose the paramagnetic center in determining a given local spin polarization. Discriminating magnetic from reaction or relaxation contributions to such behaviour strongly enhances chemical insight, though care needs to be paid to the large sensitivity of the latter contributions to the level of the computational approach and to the difficulty of singling out the magnetic orbitals in the case of highly correlated systems. Comparison of source function atomic contributions to the spin density with those reconstructing the electron density at a system''s position, enlightens how the mechanisms which determine the two densities may in general differ and how diverse may be the role played by each system''s atom in determining each of the two densities. These mechanisms reflect the quite diverse portraits of the electron density and electron spin density Laplacians, hence the different local concentration/dilution of the total and (α–β) electron densities throughout the system. Being defined in terms of an observable, the source function for the spin density is also potentially amenable to experimental determination, as customarily performed for its electron density analogue.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号