首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   316篇
  免费   13篇
  国内免费   6篇
化学   246篇
晶体学   2篇
力学   16篇
数学   34篇
物理学   37篇
  2024年   1篇
  2023年   4篇
  2022年   5篇
  2021年   20篇
  2020年   34篇
  2019年   23篇
  2018年   8篇
  2017年   12篇
  2016年   28篇
  2015年   15篇
  2014年   20篇
  2013年   38篇
  2012年   28篇
  2011年   29篇
  2010年   8篇
  2009年   12篇
  2008年   17篇
  2007年   9篇
  2006年   6篇
  2005年   12篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  1991年   1篇
  1990年   1篇
排序方式: 共有335条查询结果,搜索用时 0 毫秒
251.
In this work, the effect of quaternary ammonium salt containing nanoclay content (1–5 wt%) on phase morphology, rheology, cure kinetics, and mechanical properties of the vinyl ester resin (VER)‐based nanocomposites was studied. The morphological characterization including d‐spacing measurement, microscopy observation and phase‐height image processing were performed on the prepared nanocomposites using small angel X‐ray scattering (SAXS), transmission electron microscopy (TEM) and atomic force microscopy (AFM). According to the results obtained from these techniques, it was concluded that an intercalated morphology existed for all the nanocomposites. The kinetic analyses of the isothermal curing followed by storage modulus obtained from the rheometry experiments are shown to be an affective rheological characteristic to investigate the cure behavior of VER/clay nanocomposites. In addition, the most important finding regarding the effect of nanoclay on the cross‐linking behavior of VER systems lays on the chemisorption and physisorption of the reacting monomers and initiator molecules on the nanoclay platelets surface which is found to be responsible for the retardation of the cure reaction caused by organoclay. Eventually, the mechanical characterizations were performed through the tensile, flexural and impact analysis tests. In this case, a considerable improvement of the bulk mechanical responses such as tensile and flexural strengths and also the corresponding moduli were observed for the nanocomposites. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
252.
This paper presents the numerical study of internal free convection of Al2O3 water nanofluid in vertical annuli. Vertical walls are maintained at constant temperatures and horizontal walls are adiabatic. Results are validated by experimental data. Effect of nanofluids on natural convection is investigated as a function of geometrical and physical parameters and particle fractions for aspect ratio of 1 ≤ H/L ≤ 5, Grashof number of 103 ≤ Gr ≤ 105 and concentration of 0 ≤ ϕ ≤ 0.06. More than 330 different numerical cases are investigated to develop a new correlation for the Nusselt number. This correlation is presented as a function of Nusselt number of base fluid and particle fraction which is a linear decreasing function of particle fraction. The developed correlation for annuli is also valid for the natural convection of Al2O3 water nanofluid in a square cavity. Furthermore, the effect of the viscosity and conductivity models on the Nusselt number of nanofluids in cylindrical cavities are discussed.  相似文献   
253.

In this study, a model is proposed by applying the least squares support vector machine (LSSVM). In addition, genetic algorithm is used for selection and optimization of hyperparameters that are embedded in the LSSVM model. In addition to temperature and concentration of nanoparticles, the parameters which are used in most of the modeling procedures for thermal conductivity, the effect of particle size is considered. By considering the size of nanoparticles as one of the input variables, a more comprehensive model is obtained which is applicable for wider ranges of influential factor on the thermal conductivity of the nanofluid. The coefficient of determination (R2) for the introduced model is equal to 0.9902, and the mean squared error is 8.64 × 10?4 for the thermal conductivity ratio of Al2O3/EG.

  相似文献   
254.
In this study, firstly, a double‐reservoir and switchable prototype of a micro‐chip along with the respective holders were fabricated. A cyclic desorption process using microliter volume of organic solvent was adopted to prevent any outdoor contamination. As extractive phases, two identical sheets of electrospun polyamide/polypyrrole/titania nanofibers were synthesized using core–shell electro‐spinning technique and utilized for determination of memantine in plasma samples. Field emission scanning electron microscopy images showed a high degree of porosity and homogeneity throughout the sheet structure. Also, energy dispersive X‐ray analysis confirmed the presence of titania, while the recorded Fourier transform infrared spectra proved the chemical structures of the polymeric mats. The incorporation of titania as well as polypyrrole in the composition of polyamide nanofibers improved both mechanical stability and extraction capacity of the extractive phase and therefore facilitated the extraction/desorption process. The limits of detection and quantification were 0.01 and 0.04 ng/mL, respectively. In addition, the interday and intraday precisions were lower than 6.7% (n = 3). The linearity was in the range of 0.14–75.00 ng/mL, while recoveries were between 94.1 and 98.4% with the regression coefficient of 0.9987.  相似文献   
255.
Polymeric materials have been used in a range of pharmaceutical and biotechnology products for more than 40 years. These materials have evolved from their earlier use as biodegradable products such as resorbable sutures, orthopaedic implants, macroscale and microscale drug delivery systems such as microparticles and wafers used as controlled drug release depots, to multifunctional nanoparticles (NPs) capable of targeting, and controlled release of therapeutic and diagnostic agents. These newer generations of targeted and controlled release polymeric NPs are now engineered to navigate the complex in vivo environment, and incorporate functionalities for achieving target specificity, control of drug concentration and exposure kinetics at the tissue, cell, and subcellular levels. Indeed this optimization of drug pharmacology as aided by careful design of multifunctional NPs can lead to improved drug safety and efficacy, and may be complimentary to drug enhancements that are traditionally achieved by medicinal chemistry. In this regard, polymeric NPs have the potential to result in a highly differentiated new class of therapeutics, distinct from the original active drugs used in their composition, and distinct from first generation NPs that largely facilitated drug formulation. A greater flexibility in the design of drug molecules themselves may also be facilitated following their incorporation into NPs, as drug properties (solubility, metabolism, plasma binding, biodistribution, target tissue accumulation) will no longer be constrained to the same extent by drug chemical composition, but also become in-part the function of the physicochemical properties of the NP. The combination of optimally designed drugs with optimally engineered polymeric NPs opens up the possibility of improved clinical outcomes that may not be achievable with the administration of drugs in their conventional form. In this critical review, we aim to provide insights into the design and development of targeted polymeric NPs and to highlight the challenges associated with the engineering of this novel class of therapeutics, including considerations of NP design optimization, development and biophysicochemical properties. Additionally, we highlight some recent examples from the literature, which demonstrate current trends and novel concepts in both the design and utility of targeted polymeric NPs (444 references).  相似文献   
256.
We are introducing nanoporous fructose (np-F) modified with dithizone as a new solid-phase for extraction of heavy metals ions including cadmium(II), copper(II), nickel(II) and lead(II). Effects of pH value, flow rates, type, concentration and volume of the eluent, breakthrough volume, and of other ions were studied. Under optimized conditions, the extraction efficiency is >97 %, and the limits of detection are 0.025, 0.15, 0.5 and 1.2 ng mL?1 for the ions of cadmium, copper, nickel, and lead, respectively, and the adsorption capacities for these ions are 101, 81, 74 and 178 mg g?1. The modified np-F sorbent was characterized by thermogravimetric analysis, differential thermal analysis, transmission electron microscopy, Fourier transform infrared spectrometry, X-ray diffraction, and nitrogen adsorption surface area (BET) measurements.
Figure
We are introducing nanoporous fructose (np-F) modified with dithizone as a new solid-phase for extraction of heavy metals ions including cadmium(II), copper(II), nickel(II) and lead(II). This SPE technique was successfully applied for separation, determination, and preconcentration of cadmium, copper, nickel and lead in biological, food and environmental water samples  相似文献   
257.
High crystalline cerium hexaboride (CeB6) nanoparticles (NPs) were synthesized using mixture of mag‐ nesium (Mg), cerium oxide (CeO2) and boron oxide (B2O3) via the mechanochemical process at room tem‐ perature. Based on the results, magnesiothermic reduction of B2O3 occurred after about 2 h of milling in a mechanically induced self‐sustaining reaction (MSR). The significant amount of heat produced by the reduction reaction resulted in CeO2 reduction to elemental Ce which finally reacted with elemental B and formed CeB6 compound. According to XRD analyses, the degree of crystallinity and lattice parameter of the product was calculated about 93 % and 4.1458 Å, respectively. The morphology observations revealed that the synthesized CeB6 had semi‐cubic shape with the range of size 25–60 nm. The synthesis of CeB6 during the thermal treatment was studied by simultaneous thermal analysis (STA) technique. It was found that the reduction of B2O3 took place after melting of Mg meanwhile, no CeB6 phase achieved even up to 1100 °C.  相似文献   
258.
259.
Nanofluids can be utilized as efficient heat transfer fluids in many thermal energy systems to improve the system’s thermal efficiency. This survey reviews and summarizes the experimental and numerical studies performed to determine the effect of nanofluids on the performance of condensing and evaporating systems. Advantages and disadvantages of nanofluid implementation in condensing and evaporating systems are evaluated and summarized. Moreover, some suggestions and recommendations are presented for future studies. This review shows that the nanoparticle deposition and nanoparticle suspension are two important factors affecting the thermal system’s efficiency. These factors should be considered when using different nanofluids in condensing and evaporating systems.  相似文献   
260.
In this work,fullerene was modified by platinum,ruthenium,tin and tungsten nanoparticles.The material was characterized by XRD,ICP-OES and TEM micrograph.The average nanoparticle size on fullerene was 5-8 nm.The application of this material was investigated as a catalyst for methanol oxidation in direct methanol fuel cell.A glassy carbon electrode was modified by Pt/Ru/Sn/W fullerene and electrocatalytic activity of the electrode toward methanol oxidation in basic medium has been demonstrated and investigated using cyclic voltammetry.The catalyst showed good reactivity for methanol oxidation.  相似文献   
[首页] « 上一页 [21] [22] [23] [24] [25] 26 [27] [28] [29] [30] [31] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号