首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1220篇
  免费   48篇
  国内免费   7篇
化学   905篇
晶体学   22篇
力学   32篇
综合类   1篇
数学   109篇
物理学   206篇
  2023年   20篇
  2022年   53篇
  2021年   49篇
  2020年   51篇
  2019年   38篇
  2018年   30篇
  2017年   31篇
  2016年   52篇
  2015年   27篇
  2014年   52篇
  2013年   60篇
  2012年   101篇
  2011年   100篇
  2010年   55篇
  2009年   41篇
  2008年   63篇
  2007年   77篇
  2006年   53篇
  2005年   50篇
  2004年   25篇
  2003年   45篇
  2002年   36篇
  2001年   10篇
  2000年   8篇
  1999年   12篇
  1998年   7篇
  1997年   9篇
  1996年   6篇
  1995年   6篇
  1994年   4篇
  1993年   6篇
  1992年   8篇
  1991年   7篇
  1989年   4篇
  1987年   5篇
  1986年   3篇
  1985年   7篇
  1984年   9篇
  1982年   3篇
  1981年   5篇
  1980年   3篇
  1979年   3篇
  1978年   5篇
  1976年   3篇
  1975年   5篇
  1973年   4篇
  1972年   2篇
  1971年   3篇
  1966年   2篇
  1957年   2篇
排序方式: 共有1275条查询结果,搜索用时 15 毫秒
961.
Synthesis of atom‐precise alloy nanoclusters with uniform composition is challenging when the alloying atoms are similar in size (for example, Ag and Au). A galvanic exchange strategy has been devised to produce a compositionally uniform [Ag24Au(SR)18]? cluster (SR: thiolate) using a pure [Ag25(SR)18]? cluster as a template. Conversely, the direct synthesis of Ag24Au cluster leads to a mixture of [Ag25?xAux(SR)18]?, x=1–8. Mass spectrometry and crystallography of [Ag24Au(SR)18]? reveal the presence of the Au heteroatom at the Ag25 center, forming Ag24Au. The successful exchange of the central Ag of Ag25 with Au causes perturbations in the Ag25 crystal structure, which are reflected in the absorption, luminescence, and ambient stability of the particle. These properties are compared with those of Ag25 and Ag24Pd clusters with same ligand and structural framework, providing new insights into the modulation of cluster properties with dopants at the single‐atom level.  相似文献   
962.
Ionic metal–organic frameworks (MOFs) are a subclass of porous materials that have the ability to incorporate different charged species in confined nanospace by ion‐exchange. To date, however, very few examples combining mesoporosity and water stability have been realized in ionic MOF chemistry. Herein, we report the rational design and synthesis of a water‐stable anionic mesoporous MOF based on uranium and featuring tbo‐type topology. The resulting tbo MOF exhibits exceptionally large open cavities (3.9 nm) exceeding those of all known anionic MOFs. By supercritical CO2 activation, a record‐high Brunauer‐Emmett‐Teller (BET) surface area (2100 m2 g?1) for actinide‐based MOFs has been obtained. Most importantly, however, this new uranium‐based MOF is water‐stable and able to absorb positively charged ions selectively over negatively charged ones, enabling the efficient separation of organic dyes and biomolecules.  相似文献   
963.
Pyridoxine is analyzed using square wave voltammetry (SWV) at copper nanoparticles (nano‐Cu) modified poly‐crystalline gold electrode (nano‐Cu/Au). Nano‐Cu/Au is fabricated by a potential scan electrodeosition technique. Nano‐Cu/Au electrode has been characterized morphologically and electrochemically. The analysis of pyridoxine at nano‐Cu/Au electrode is achieved utilizing the quenching of copper voltammetric response due to the complexation with pyridoxine forming an electroinactive complex. Pyridoxine selectively forms complex with copper ions (modifier), but not with Au (underlying substrate) as supported by UV/Vis spectrophotometry. Using SWV the calibration curve for pyridoxine analysis was obtained in the concentration range of 0.3–2.7 µM with high correlation coefficient. The proposed method has been successfully applied for the determination of pyridoxine in two dosage forms.  相似文献   
964.
Summary. 5-Amino-3-(3-methyl-5-oxo-1-phenyl-2-pyrazolin-4-yl)-7-phenyl-7H-thiazolo[3,2-a]pyrimidine-6-carbonitrile was synthesized via the reaction of 4-(2-aminothiazol-4-yl)-3-methyl-1-phenyl-2-pyrazolin-5-one with benzylidene malononitrile and was then transformed to related fused heterocyclic systems. The antifungal and antibacterial studies revealed in some cases excellent biocidal properties.  相似文献   
965.
Hexachlorocyclophosph(V)azane of sulfadiazine, (sulfupyrimidine) [N(1)-2-pyrimidinylsulfanilamide] (H2L1), was prepared and reacted with sulfur and glycine to give (H2L2) and (H2L3) ligands, respectively. The prepared ligands; H2L1, H2L2 and H2L3, react in 1:2 [ligands]:[metal ions] molar ratio with transition metals to give coloured complexes in a relatively good yields. The complexes were characterized using different physicochemical techniques, namely elemental analyses, IR, UV-vis, mass, 1H NMR, molar conductance, magnetic, solid reflectance and thermal analysis. The spectral data reveal that all the ligands behave as neutral bidentate ligands and coordinated to the metal ions via pyrimidine-N and enolic sulfonamide OH. The molar conductance data reveal that the complexes are non-electrolytes while UV-vis, solid reflectance and magnetic moment data have been shown that the complexes have octahedral geometry. The thermal behaviour of the complexes is studied and the thermodynamic activation parameters are calculated. The ligands and their complexes show high to moderate bactericidal activity.  相似文献   
966.
Three coordination polymers based on the new ligand oxamide N,N-bis(4-phthalic acid), namely [Zn(L)0.5-(2,2′-bpy)] n (1), [Ni2(2,2′-bpy)4(µ 2-Ox)]L·3H2O (2) and [Cd(L)(1,10-phen)] (3) [L = oxamide N,N-bis(4-phthalic acid)], (2,2′-bpy = 2,2′-bipyridine), (1,10-phen = 1,10-phenanthroline), have been solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction: compound 1 is one-dimensional ladder-like coordination polymer, compound 2 exhibits a three-dimensional structure resulting in extensive hydrogen bonds built with the help of lattice water molecules, compound 3 also exhibits a three-dimensional supramolecular structure. All compounds were also characterized by elemental analysis, IR spectra and thermogravimetric analysis; furthermore, the magnetic measurements for 2 reveal antiferromagnetic coupling between the nickel(II) ions.  相似文献   
967.
Small organic molecules can assume conformations in the protein-bound state that are significantly different from those in solution. We have analyzed the conformations of 21 common torsion motifs of small molecules extracted from crystal structures of protein-ligand complexes and compared them with their torsion potentials calculated by an ab initio DFT method. We find a good correlation between the potential energy of the torsion motifs and their conformational distribution in the protein-bound state: The most probable conformations of the torsion motifs agree well with the calculated global energy minima, and the lowest torsion-energy state becomes increasingly dominant as the torsion barrier height increases. The torsion motifs can be divided into 3 groups based on torsion barrier heights: high (>4 kcal/mol), medium (2-4 kcal/mol), and low (<2 kcal/mol). The calculated torsion energy profiles are predictive for the most preferred bound conformation for the high and medium barrier groups, the latter group common in druglike molecules. In the high-barrier group of druglike ligands, >95% of conformational torsions occur in the energy region <4 kcal/mol. The conformations of the torsion motifs in the protein-bound state can be modeled by a Boltzmann distribution with a temperature factor much higher than room temperature. This high-temperature factor, derived by fitting the theoretical model to the experimentally observed conformation occurrence of torsions, can be interpreted as the perturbation that proteins inflict on the conformation of the bound ligand. Using this model, it is calculated that the average strain energy of a torsion motif in ligands bound to proteins is approximately 0.6 kcal/mol, a result which can be related to the lower binding efficiency of larger ligands with more rotatable bonds. The above results indicate that torsion potentials play an important role in dictating ligand conformations in both the free and the bound states.  相似文献   
968.
The reaction of S-benzyl dithiocarbazate (SBDTC) with 2,4,5-trimethoxybenzaldehyde afforded a bidentate NS Schiff base 1 (benzyl-3-N-(2,4,5-trimethoxyphenylmethylenehydrazine carbodithioate), which on further reaction with M(II) (where M(II) = nickel(II), zinc(II), palladium(II) and copper(II)) in ethanol under reflux yielded bis-chelated inner complexes [ML2] 25 with deprotonated L. The ligand and its complexes were characterized by physicochemical techniques, viz., molar conductance, magnetic susceptibility measurement, IR, NMR, UV–Vis and mass spectroscopic techniques. The crystal structures of 1 and 5 were also determined by single-crystal X-ray crystallography. The crystal structure analysis showed that the ligand exists in its thione tautomeric form. In the complexes, each of the two deprotonated ligands chelated the metal ions through the β-nitrogen and the thione sulfur forming five-membered rings. The copper(II) complex (5) exhibited a square-planar geometry, where the two N2S2 chromophores are arranged trans. All the compounds showed strong antibacterial activity against S.-β-hemolyticus, Klebsiella pneumoni, and Escherichia coli. The compounds also showed strong antifungal activity against Aspergillus fumigatus, Aspergillus niger, Aspergillus flavus, and Candida albicans with the exception of the palladium(II) complex (4) which showed no activity, while all the compounds showed no activity against Fusarium vasinfectum.  相似文献   
969.
970.
The unstrained S‐allyl cysteine amino acid was site‐specifically installed on apoptosis protein biomarkers and was further used as a chemical handle and ligation partner for 1,2,4,5‐tetrazines by means of an inverse‐electron‐demand Diels–Alder reaction. We demonstrate the utility of this minimal handle for the efficient labeling of apoptotic cells using a fluorogenic tetrazine dye in a pre‐targeting approach. The small size, easy chemical installation, and selective reactivity of the S‐allyl handle towards tetrazines should be readily extendable to other proteins and biomolecules, which could facilitate their labeling within live cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号