首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   137篇
  免费   1篇
化学   48篇
晶体学   1篇
力学   1篇
数学   11篇
物理学   77篇
  2022年   1篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   3篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   8篇
  2010年   4篇
  2009年   3篇
  2008年   7篇
  2007年   10篇
  2006年   5篇
  2005年   5篇
  2004年   6篇
  2003年   3篇
  2001年   3篇
  2000年   10篇
  1999年   7篇
  1998年   3篇
  1996年   8篇
  1995年   3篇
  1994年   12篇
  1993年   7篇
  1992年   4篇
  1991年   2篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   1篇
  1969年   1篇
排序方式: 共有138条查询结果,搜索用时 15 毫秒
31.
Micelles, vesicles, and films composed of two species of incompatible heterogeneous molecules exhibit full internal segregation of the component species. This macroscopic segregation can be inhibited by oppositely charging the two different molecular species. The degree of compatibility achieved by the charges leads to either fully homogenous mixtures or to local segregation and the possible formation of regular patterns. We investigate the induction of periodic surface patterns by the presence of opposite charges in flat films and cylindrical micelles. In the strong segregation limit the incompatibility between species can be described by a line tension parameter gamma. The size of the patterns formed is of the order of a characteristic size L approximately (gamma/sigma(2))(1/2), where sigma is the surface charge density. The pattern symmetry on flat surfaces is function only of the fraction of area covered by the components, f: lamellar for 0.34相似文献   
32.
Polubarinova-Kochina's analytical differential equation methodis used to determine the pseudo-steady-state solution to problemsinvolving the freezing (solidification) of wedges of liquidwhich are initially at their fusion temperature. In particular,we consider four distinct problems for wedges which are: freezingwith the same constant boundary temperature, freezing with thesame constant boundary heat fluxes, freezing with distinct constantboundary temperatures and freezing with distinct constant fluxesat the boundaries. For the last two problems, a Heun's differentialequation with an unknown singularity is derived, which in bothcases admits a particularly elegant simple solution for thespecial case when the wedge angle is . The moving boundariesobtained are shown pictorially.  相似文献   
33.
The effects of non-equilibrium charge screening in mixtures of oppositely charged interacting molecules on surfaces are analyzed in a closed system. The dynamics of charge screening and the strong deviation from the standard Debye-Hückel theory are demonstrated via a new formalism based on computing radial distribution functions suited for analyzing both short-range and long-range spacial ordering effects. At long distances the inhomogeneous molecular distribution is limited by diffusion, whereas at short distances (of the order of several coordination spheres) by a balance of short-range (Lennard-Jones) and long-range (Coulomb) interactions. The non-equilibrium charge screening effects in transient pattern formation are further quantified. It is demonstrated that the use of screened potentials, in the spirit of the Debye-Hückel theory, leads to qualitatively incorrect results.  相似文献   
34.
    
The Auν + NO(2Π) → AuNOν reaction, for ν = ?1, 0, +1, anion, neutral, and cation are calculated and predicted at multireference configuration interaction (MRCI) and multireference second order perturbation (MRPT2) levels of theory, in this way the main parameters: reaction path surfaces, total and adsorption energies, optimized geometries, and Mulliken charges distribution are presented and compared. The AuNO (X 1A′) complex is created spontaneously with ?11.32 and ?13.14 kcal/mol adsorption energies with the MRCI and MRPT2 approaches, respectively. The AuNO bonding in the neutral gold nitrosyl complex has a covalent character and the nitric oxide (NO) molecule is not dissociated. The others excited states (a 3A″, b 3A′, and A 1A″) do not present bonding. The gold nitrosyl cationic (X 2A′, A 2A″, and a 4A″) and anionic (X 2A″ and a 4A″) are bonding and present a dative covalent bond. The Mulliken analysis done for ionic species show that the binding is done through soft electrostatic interactions, due to that there is some charge transfer, delocalized onto the NO molecule for the AuNO± ionic species whereas the AuNO (X 1A′) neutral complex presents a little charge transfer. © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
35.
    
A new type of phase separation in the polyelectrolyte solutions consisting of several types of charged macromolecules differing in their degree of ionization is presented. Via a general thermodynamic consideration we show that even a small difference in the degree of ionization of otherwise equivalent high‐molecular components results in their spatial separation occurring upon decreasing the temperature much earlier than precipitation of any of the pure components from the solution. Some implications of charge fractionation are discussed, including the separation of DNA (or RNA) strands interacting with different proteins and the appearance of heterogeneities in polyelectrolyte solutions of partially charged hydrophobic chains with polydispersed charge distributions such as sodium polystyrene sulfonate. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 3003–3009, 2007  相似文献   
36.
    
Self‐assembled peptide amphiphile (PA) nanofibers are a class of supramolecular materials with promising applications in nanotechnology. Alignment of nanofibers, which is essential for biomaterials applications, is achieved at low salt concentrations in the PA nanofiber suspensions. Regardless of its importance, the effect of ion concentration on the properties of these nanostructures remains unexplored. Using atomistic molecular dynamics simulations, canonical PA nanostructures are investigated to elucidate the relationship between counterion condensation and morphological changes. Simulations reveal that nanofibers with the highest cross‐section density have expanded radii. This expansion decreases the accessible volume for sodium counterions and diminishes the counterion translational entropy, while also reducing the total electrostatic potential. Interestingly, we show that the competition between these effects leads to a fraction of condensed counterions independent of the fiber radius. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 901–906  相似文献   
37.
    
Self‐replication is a remarkable phenomenon in nature that has fascinated scientists for decades. In a self‐replicating system, the original units are attracted to a template, which induce their binding. In equilibrium, the energy required to disassemble the newly assembled copy from the mother template is supplied by thermal energy. The possibility of optimizing self‐replication was explored by controlling the frequency at which energy is supplied to the system. A model system inspired by a class of light‐switchable colloids was considered where light is used to control the interactions. Conditions under which self‐replication can be significantly more effective under non‐equilibrium, cyclic energy delivery than under equilibrium constant energy conditions were identified. Optimal self‐replication does not require constant energy expenditure. Instead, the proper timing at which energy is delivered to the system is an essential controllable parameter to induce high replication rates.  相似文献   
38.
Conductive and transparent fluorine and zirconium co-doped zinc oxide [ZnO:(F, Zr)] thin films have been deposited onto sodocalcic glass substrates by the chemical spray technique. The effects of starting solution ageing time and the substrate temperature on the transport, structural, and morphological properties of as-deposited ZnO:(F, Zr) thin films are presented in this paper. A decrease in the electrical resistivity values is observed as the starting solution used is more aged, reaching a minimum resistivity of the order of 1.3×10?2 Ω cm in samples deposited from a 17-day-aged solution, then increasing in samples deposited from solutions aged beyond this ageing time. According to the characterization results, the surface morphology is dependent on the solution ageing time. The X-ray diffraction patterns reveal that the ZnO:(F, Zr) thin films are polycrystalline in nature, fitting well with a hexagonal wurtzite structure, and showing the (0 0 2) planes as preferential growth in all the deposited films. The average optical transmittance, measured in the near UV–visible region, was of the order of 75% in all the cases.  相似文献   
39.
The bulk and interfacial properties of ternary mixtures with asymmetric amphiphiles (A2B8) in A2 and B2 matrices and in A2 and B10 matrices are investigated by the dissipative particle dynamics type of molecular-dynamics simulations. The monomer concentrations of A2B8(phiA2B8) studied are below the critical micelle concentration (phiA2B8(cmc)) for the formation of micelles in the presence of an adsorbed amphiphilic monolayer at the interface. Macrophase separation from the mixed phase to the segregated state with A-rich and B-rich coexisting phases and the segregation of A2B8 at the interface are thermodynamically gradual but are accompanied by a pronounced stretching and orientation of the constituent chains. The segregation of A2B8 at the interface broadens the interfacial region and reduces the interfacial tension. The chain conformation of the asymmetric amphiphilic molecules and the interfacial properties are dominated by the majority block in the amphiphilic chain and dependent on the composition of the matrix in contact with the majority block. In the A2 and B2 matrices, the B8 blocks in A2B8 chains at the interface resemble a wet brush swollen by short B2 chains. Swelling is responsible for the pronounced stretching and orienting of the amphiphilic chains and the reduced interfacial amphiphile enrichment. At the same interfacial amphiphile excess, however, swollen amphiphiles are more efficient in reducing the interfacial tension than nonswollen amphiphiles.  相似文献   
40.
We consider a model for periodic patterns of charges constrained over a cylindrical surface. In particular we focus on patterns of chiral helices, achiral rings, or vertical lamellae, with the constraint of global electroneutrality. We study the dependence of the patterns' size and pitch angle on the radius of the cylinder and salt concentration. We obtain a phase diagram by using numerical and analytic techniques. For pure Coulomb interactions, we find a ring phase for small radii and a chiral helical phase for large radii. At a critical salt concentration, the characteristic domain size diverges, resulting in an achiral macroscopic phase-segregated structure. We discuss possible consequences and generalizations of our model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号