首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   0篇
化学   11篇
数学   1篇
物理学   10篇
  2022年   4篇
  2021年   6篇
  2020年   2篇
  2019年   1篇
  2016年   1篇
  2015年   1篇
  2012年   4篇
  2009年   1篇
  2008年   1篇
  2005年   1篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
11.
Metabolite profiling of cancer cells presents many opportunities for anticancer drug discovery. The Chinese, Indian, and African flora, in particular, offers a diverse source of anticancer therapeutics as documented in traditional folklores. In-depth scientific information relating to mechanisms of action, quality control, and safety profile will promote their extensive usage in cancer therapy. Metabolomics may be a more holistic strategy to gain valuable insights into the anticancer mechanisms of action of plants but this has remained largely unexplored. This review, therefore, presents the available metabolomics studies on the anticancer effects of herbal medicines commonly used in Africa and Asia. In addition, we present some scientifically understudied ‘candidate plants’ for cancer metabolomics studies and highlight the relevance of metabolomics in addressing other challenges facing the drug development of anticancer herbs. Finally, we discussed the challenges of using metabolomics to uncover the underlying mechanisms of potential anticancer herbs and the progress made in this regard.  相似文献   
12.
Owing to the numerous advantages of graphene-based polymer nanocomposite, this study is focused on the fabrication of the hybrid of polyvinyl alcohol (PVA), polypyrrole (PPy), and reduced graphene-oxide. The study primarily carried out the experimentation and the mathematical analysis of the electrical conductivity of PVA/PPy/rGO nanocomposite. The preparation method involves solvent/drying blending method. Scanning electron microscopy was used to observe the morphology of the nanocomposite. The electrical conductivity of the fabricated PVA/PPy/rGO nanocomposite was investigated by varying the content of PPy/rGO on PVA. From the result obtained, it was observed that at about 0.4 (wt%) of the filler content, the nanocomposite experienced continuous conduction. In addition, Ondracek, Dalmas s-shape, dose–response, and Gaussian fitting models were engaged for the analysis of the electrical transport property of the nanocomposite. The models were validated by comparing their predictions with the experimental measurements. The results obtained showed consistency with the experimental data. Moreover, this study confirmed that the electrical conductivity of polymer-composite largely depends on the weight fraction of fillers. By considering the flexibility, simplicity, and versatility of the studied models, this study suggests their deployment for the optimal characterization/simulation tools for the prediction of the electrical conductivity of polymer-composites.  相似文献   
13.

A luminescent Cobalt(II) co-crystal [Co13(PDC)16(H2O)24.7H2O] 1 (where H2PDC?=?2,6-pyridinedicarboxylic acid) have been prepared by oven-heating and slow evaporation of solvent. Single crystal X-ray diffraction (SCXRD) analysis revealed that 1 is a mixture of complexes that crystallizes in the triclinic space group P-1 and the geometry around the Co(II) ions is octahedral. The structure is extensively imbued with hydrogen bonding that helps in stabilizing the complex. Thermogravimetric analysis indicates that 1 is thermally stable up to 364 οC. The luminescence properties of 1 revealed a strong emission centered at 437 nm (λex?=?345 nm) assigned to ligand to metal charge transfer (LMCT). The luminescence sensing of 1 towards volatile organic molecules were also examined. However, 1 displayed a turn off towards methanol compared to other molecules with high quenching efficiency and low limit of detection (3.5?×?10?4 vol%). The results show excellent selectively and high sensitivity. Powder X-ray diffraction studies revealed that the structural integrity of the complex was maintained after exposure to methanol vapour. Theoretical studies also revealed small binding energy (?413.2 au) and low energy gap (1.19) for 1-CH3OH adduct.

  相似文献   
14.
This paper reports a “green” facile, room temperature, one-pot synthesis of starch-capped CdSe nanostructures with an obvious quantum confinement effect via a novel non-organometallic method. It is found that by simply tuning the Cd:Se molar ratio, dots and elongated particles of high aspect ratio could be prepared selectively in the presence of the same ligand concentration without any post-treatment. Spherical particles were produced at 1:1 ratio, while elongated particles were produced at 0.5:1 Cd:Se ratio. The X-ray diffraction (XRD) analysis showed that the particles were predominantly of wurtzite structure, with sharp diffraction patterns regardless of their size and shapes. We inferred that the elongated particles are formed by self-reorganisation occurring via adhesion between the spherical nanoparticles as a result of dipole–dipole interactions.  相似文献   
15.
Optical fibers are expected to play a role in chip-level and board-level optical interconnects because of limitations on the bandwidth and level of integration of electrical interconnects. Therefore, methods are needed to couple optical fibers directly to waveguides on chips and on boards. We demonstrate optical-fiber-to-waveguide coupling using carbon-dioxide laser-induced long-period fiber gratings (LPFGs). Such gratings can be written in standard fiber and offer wavelength multiplexing-demultiplexing performance. The coupler fabrication process and the characterization apparatus are presented. The operation and the wavelength response of a LPFG-based optical-fiber-to-waveguide directional coupler are demonstrated.  相似文献   
16.
This study aimed to investigate the kinetics of phenolic compound modification during the fermentation of maize flour at different times. Maize was spontaneously fermented into sourdough at varying times (24, 48, 72, 96, and 120 h) and, at each point, the pH, titratable acidity (TTA), total soluble solids (TSS), phenolic compounds (flavonoids such as apigenin, kaempferol, luteolin, quercetin, and taxifolin) and phenolic acids (caffeic, gallic, ferulic, p-coumaric, sinapic, and vanillic acids) were investigated. Three kinetic models (zero-, first-, and second-order equations) were used to determine the kinetics of phenolic modification during the fermentation. Results obtained showed that fermentation significantly reduced pH, with a corresponding increase in TTA and TSS. All the investigated flavonoids were significantly reduced after fermentation, while phenolic acids gradually increased during fermentation. Among the kinetic models adopted, first-order (R2 = 0.45–0.96) and zero-order (R2 = 0.20–0.82) equations best described the time-dependent modifications of free and bound flavonoids, respectively. On the other hand, first-order (R2 = 0.46–0.69) and second-order (R2 = 0.005–0.28) equations were best suited to explain the degradation of bound and free phenolic acids, respectively. This study shows that the modification of phenolic compounds during fermentation is compound-specific and that their rates of change may be largely dependent on their forms of existence in the fermented products.  相似文献   
17.
Blood stream infections in the cancer patients are a critical problem which leads to considerable rate of mortality and morbidity. In view of this herein, we account the response of Poly Vinyl Pyrrolidone (PVP) coated silver nanowires (Ag-NWs) and silver nano cubes (Ag-NCs) towards carbapenem (Escherichia coli) and vancomycin (Staphylococcus aureus) resistant strains as well as to human epithelial cells. The prepared PVP capped silver nanomaterials were in the range of 80 nm (Ag-NC) and 25 nm (Ag-NW) as observed from Transmission Electron Microscopy (TEM). Though the selected strains were resistant to carbapenem and vancomycin, PVP capped Ag-NWs and Ag-NCs could inhibit the growth of these strains. These nanomaterials could break the cell wall and damage the genetic material of these strains as observed by death rate assay and alkaline comet assay. Furthermore, we have shown that toxicity of Ag-NWs and Ag-NCs precisely follows the dose retort pattern. Even though the resistant strains were susceptible to a concentration of 10 µg ml?1 of silver nanomaterials the epithelial cells were not affected by the same concentration. It is also confirmed with live dead staining assay and observed that metabolic activities of epithelial cells were not affected by a concentration of 10 µg ml?1. Overall, this work suggests that these nanomaterials can be utilized to treat the multiple drug resistant strains from cancer patients.  相似文献   
18.
The Catharanthus roseus plant has been used traditionally to treat diabetes mellitus. Scientific evidence supporting the antidiabetic effects of this plant’s active ingredient-vindoline has not been fully evaluated. In this study, extracts of C. roseus and vindoline were tested for antioxidant activities, alpha amylase and alpha glucosidase inhibitory activities and insulin secretory effects in pancreatic RIN-5F cell line cultured in the absence of glucose, at low and high glucose concentrations. The methanolic extract of the plant showed the highest antioxidant activities in addition to the high total polyphenolic content (p < 0.05). The HPLC results exhibited increased concentration of vindoline in the dichloromethane and the ethylacetate extracts. Vindoline showed noticeable antioxidant activity when compared to ascorbic acid at p < 0.05 and significantly improved the in vitro insulin secretion. The intracellular reactive oxygen species formation in glucotoxicity-induced cells was significantly reduced following treatment with vindoline, methanolic and the dichloromethane extracts when compared to the high glucose untreated control (p < 0.05). Plant extracts and vindoline showed weaker inhibitory effects on the activities of carbohydrate metabolizing enzymes when compared to acarbose, which inhibited the activities of the enzymes by 80%. The plant extracts also exhibited weak alpha amylase and alpha glucosidase inhibitory effects.  相似文献   
19.
Diabetes mellitus (DM) is a chronic metabolic condition that can lead to significant complications and a high fatality rate worldwide. Efforts are ramping up to find and develop novel α-glucosidase and α-amylase inhibitors that are both effective and potentially safe. Traditional methodologies are being replaced with new techniques that are less complicated and less time demanding; yet, both the experimental and computational strategies are viable and complementary in drug discovery and development. As a result, this study was conducted to investigate the in vitro anti-diabetic potential of aqueous acetone Helichrysum petiolare and B.L Burtt extract (AAHPE) using a 2-NBDG, 2-(N-(7-Nitrobenz-2-oxa-1,3-diazol-4-yl) amino)-2-deoxy-d-glucose uptake assay. In addition, we performed molecular docking of the flavonoid constituents identified and quantified by liquid chromatography-mass spectrometry (LC-MS) from AAHPE with the potential to serve as effective and safe α-amylase and α-glucosidase inhibitors, which are important in drug discovery and development. The results showed that AAHPE is a potential inhibitor of both α-amylase and α-glucosidase, with IC50 values of 46.50 ± 6.17 (µg/mL) and 37.81 ± 5.15 (µg/mL), respectively. This is demonstrated by a significant increase in the glucose uptake activity percentage in a concentration-dependent manner compared to the control, with the highest AAHPE concentration of 75 µg/mL of glucose uptake activity being higher than metformin, a standard anti-diabetic drug, in the insulin-resistant HepG2 cell line. The molecular docking results displayed that the constituents strongly bind α-amylase and α-glucosidase while achieving better binding affinities that ranged from ΔG = −7.2 to −9.6 kcal/mol (compared with acarbose ΔG = −6.1 kcal/mol) for α-amylase, and ΔG = −7.3 to −9.0 kcal/mol (compared with acarbose ΔG = −6.3 kcal/mol) for α-glucosidase. This study revealed the potential use of the H. petiolare plant extract and its phytochemicals, which could be explored to develop potent and safe α-amylase and α-glucosidase inhibitors to treat postprandial glycemic levels in diabetic patients.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号