首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   465篇
  免费   9篇
  国内免费   1篇
化学   260篇
晶体学   1篇
力学   32篇
数学   49篇
物理学   133篇
  2021年   3篇
  2020年   5篇
  2018年   7篇
  2017年   4篇
  2016年   8篇
  2015年   12篇
  2014年   4篇
  2013年   29篇
  2012年   15篇
  2011年   20篇
  2010年   9篇
  2009年   12篇
  2008年   23篇
  2007年   23篇
  2006年   19篇
  2005年   26篇
  2004年   20篇
  2003年   11篇
  2002年   7篇
  2001年   10篇
  2000年   9篇
  1999年   7篇
  1998年   7篇
  1997年   3篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   10篇
  1992年   12篇
  1991年   5篇
  1990年   8篇
  1989年   4篇
  1988年   8篇
  1987年   4篇
  1986年   5篇
  1985年   11篇
  1984年   8篇
  1983年   7篇
  1982年   7篇
  1981年   5篇
  1979年   5篇
  1977年   8篇
  1976年   3篇
  1975年   5篇
  1939年   3篇
  1938年   5篇
  1937年   7篇
  1936年   3篇
  1935年   2篇
  1934年   3篇
排序方式: 共有475条查询结果,搜索用时 15 毫秒
31.
Dilute dispersions of the synthetic bilayer forming double-chained cationic lipid dioctadecyldimethylammonium bromide (DODAB) were investigated. In dispersions sonicated above the chain melting temperature Tm (approximately 45 degrees C) it was found by H NMR that about 50% of the surfactant chains remained fluid when the samples were cooled to room temperature, which is 20 degrees C below Tm. In contrast, there was no sign of a fluid fraction in unsonicated samples at room temperature. The addition of the anionic surfactant sodium dodecyl sulfate (SDS) to DODAB dispersions at room temperature resulted in the formation of an essentially stoichiometric DODA-DS complex with frozen chains, as seen by titration calorimetry and H NMR experiments. For sonicated samples, turbidity experiments demonstrated that, after a fast complexation reaction, the system remains colloidally stable unless the SDS-to-DODAB mixing ratio is too close to unity. H NMR experiments also showed that in the unreacted DODAB the fraction of fluid chains remained close to 50%, indicating either that SDS reacts equally fast with fluid and frozen DODAB or that there is a relaxation of the fluid fraction after the complexation. The melting enthalpy and the melting temperature of the alkyl chains rise gradually as the mixing ratio increases. We observed with cryo-TEM that the fraction of large unilamellar vesicles was significantly larger after addition of SDS. This indicates vesicle fusion. Based on both wide- and small-angle X-ray scattering patterns, the structure of the equimolar SDS-DODAB complex at 25 degress C was proposed to be lamellar.  相似文献   
32.
Adsorption, desorption, and precipitation reactions at environmental interfaces govern the fate of phosphorus in terrestrial and aquatic environments. Typically, a substantial part of the total pool of phosphorus consists of organophosphate, and in this study we have focused on the interactions between glucose-1-phosphate (G1P) and goethite (α-FeOOH) particles. The adsorption and surface-promoted hydrolysis reactions have been studied at room temperature as a function of pH, time, and total concentration of G1P by means of quantitative batch experiments in combination with infrared spectroscopy. A novel simultaneous infrared and potentiometric titration (SIPT) technique has also been used to study the rates and mechanisms of desorption of the surface complexes. The results have shown that G1P adsorption occurs over a wide pH interval and at pH values above the isoelectric point of goethite (IEP(goethite) = 9.4), indicating a comparatively strong interaction with the particle surfaces. As evidenced by IR spectroscopy, G1P formed pH-dependent surface complexes on goethite, and investigations of both adsorption and desorption processes were consistent with a model including three types of surface complexes. These complexes interact monodentately with surface Fe but differ in hydrogen bonding interactions via the auxiliary oxygens of the phosphate group. The apparent desorption rates were shown to be influenced by reaction pathways that include interconversion of surface species, which highlights the difficulty in determining the intrinsic desorption rates of individual surface complexes. Desorption results have also indicated that the molecular structures of surface complexes and the surface charge are two important determinants of G1P desorption rates. Finally, this study has shown that surface-promoted hydrolysis of G1P by goethite is base-catalyzed but that the extent of hydrolysis was small.  相似文献   
33.
Lipid freezing in dilute sonicated vesicular dispersions was studied using differential scanning calorimetry (DSC) and 1H NMR. For charged, anionic, or cationic lipids, approximately half of the lipids remain in a fluid state when cooled 20 degrees C below the main chain melting temperature. With a zwitterionic phospholipid, on the other hand, essentially no supercooling of the liquid state was observed. The observations are analyzed in terms of the nucleation and growth of flat solid domains in originally fluid spherical vesicles. As the solid domains grow, the remaining fluid domain is deformed, resulting in a curvature stress. Depending on the vesicle size and the bilayer bending rigidity, the solid domain growth may terminate as the gain in cohesive free energy is balanced by the curvature stress of the remaining fluid domain. It is argued that high bending rigidities are required for having a significant supercooling, which is why it is only observed for charged lipids.  相似文献   
34.
New and improved preparative routes to the previously known PCP ligands cis-1,3-bis(di-isopropylphosphinito)cyclohexane and cis-1,3-bis[(di-tert-butylphosphino)methyl]cyclohexane are reported. They react with 1 equivalent of dichloro(1,5-cyclooctadiene)platinum(II) [(COD)PtCl2] to give the cis coordinated complex cis-[PtCl2{cis-1,3-bis(di-isopropylphosphinito)}cyclohexane] and the C(sp3)-H activated complex trans-[PtCl{cis-1,3-bis(di-tert-butylphosphino)}cyclohexane]. The new PCP ligand cis-1,3-bis(di-tert-butylphosphinito)cyclohexane was synthesised and reacts with [(COD)PtCl2] giving the di-nuclear trans-[PtCl2{cis-1,3-bis(di-tert-butylphosphinito)cyclohexane}]2, which is highly insoluble. All metal complexes were characterised with X-ray crystallography. DFT calculations indicate that the inability of the phosphinite ligands to cyclometallate is due to a kinetic barrier, possibly involving an axial-equatorial conformational change necessary for the C-H activation process.  相似文献   
35.
36.
Enzymatic hydrolysis of cellulose provides a renewable source of monosaccharides for production of variety of biochemicals and biopolymers. Unfortunately, the enzymatic hydrolysis of cellulose is often incomplete, and the reasons are not fully understood. We have monitored enzymatic hydrolysis in terms of molecular density, ordering and autofluorescence of cellulose structures in real time using simultaneous CARS, SHG and MPEF microscopy with the aim of contributing to the understanding and optimization of the enzymatic hydrolysis of cellulose. Three cellulose-rich substrates with different supramolecular structures, pulp fibre, acid-treated pulp fibre and Avicel, were studied at microscopic level. The microscopy studies revealed that before enzymatic hydrolysis Avicel had the greatest carbon-hydrogen density, while pulp fibre and acid-treated fibre had similar density. Monitoring of the substrates during enzymatic hydrolysis revealed the double exponential SHG decay for pulp fibre and acid-treated fibre indicating two phases of the process. Acid-treated fibre was hydrolysed most rapidly and the hydrolysis of pulp fibre was spatially non-uniform leading to fractioning of the particles, while the hydrolysis of Avicel was more than an order of magnitude slower than that of both fibres.  相似文献   
37.
This paper details the analysis of the enantiomers of omeprazole, using aqueous CE coupled with MS detection. Following our previously published work: where a non-aqueous CE–UV method was developed for omeprazole and 5-hydroxy-omeprazole; coupling to electro-spray ionization (ESI) MS detection has now been investigated, using a sheath-flow interface for introduction. An aqueous CE method was developed and designed to afford increased compatibility with ESI–MS detection, employing an ammonium acetate buffer system (pH 5.8). Common partial filling methods could not be utilized to avoid the entrance of cyclodextrin into the MS, and therefore a modified method of non-continuous-flow CE–MS was applied, with the CE separation carried out without applied ESI voltage, before reapplying and allowing flow into the MS for data collection. A chiral CE separation of omeprazole and 5-hydroxyomeprazole was achieved, and chiral CE resolution of omeprazole has been demonstrated using MS detection.  相似文献   
38.
Two endothermic transitions, at 36°C and 44°C, were observed with differential scanning calorimetry (DSC) upon heating dioctadecyldimethylammonium bromide vesicle dispersions that were equilibrated below 15°C while in samples kept at 25°C there was only the transition at 44°C, which was shown to be the gel to liquid–crystalline transition by 1H-NMR measurements. The transition at 36°C was reversed in an exothermic transition around 13°C upon cooling. The slowness of this transition at ambient temperatures suggests that the presence of the transition at 36°C in a DSC upscan depends strongly on the sample history.  相似文献   
39.
We have investigated the reversibility in the shear-induced multi-lamellar vesicle (MLV) size during stepwise cycling of the shear rate by employing common rheometry, polarized light microscopy and rheo-optic techniques. We thus address the question whether there is a true MLV steady state, irrespective of history. The system studied, was the nonionic surfactant triethylene glycol decyl ether (C10E3) with a concentration of 40 wt.% in D2O and a constant temperature of 25°C. It was found that the MLV size varies reversibly with varying shear rate, and hence there exists a true steady state in the presence of shear flow. The experimental observations of reversibility are however restricted to higher shear rates. Because the transformation of the size results from the shear strain, the process is very slow at lower shear rates, where the steady state cannot be reached within a reasonable experimental time.  相似文献   
40.
The influence of added colloidal particles on the phase separation of mixed aqueous polymer solutions is investigated. Two types of particles (polystyrene latex or silica) and different combinations of segregating polymers (dextran of varying molar mass combined with poly(ethylene oxide) (PEO) of varying molar mass, or Ucon, a copolymer of ethylene oxide and propylene oxide) were used. All systems displayed particle-induced instability effects, but the extent of the effect varied strongly between the various combinations and with the amount of added salt. Very large instability effects were seen in certain mixtures. Two mechanisms, both relying on the adsorption of at least one of the polymers to the particle surface, seem to operate. Close to the cloud-point curve of the particle-free polymer1/polymer2/water mixture, adsorption of PEO or Ucon to the particles gives rise to a capillary-induced phase separation. Close to the dextran/water axis of the phase diagram, the adsorbing polymer gives rise to a surface modification of the particles, which then interacts repulsively with the surrounding dextran solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号