首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3573篇
  免费   183篇
  国内免费   17篇
化学   2708篇
晶体学   30篇
力学   95篇
综合类   1篇
数学   492篇
物理学   447篇
  2023年   39篇
  2022年   38篇
  2021年   56篇
  2020年   86篇
  2019年   73篇
  2018年   44篇
  2017年   40篇
  2016年   136篇
  2015年   125篇
  2014年   140篇
  2013年   181篇
  2012年   234篇
  2011年   278篇
  2010年   165篇
  2009年   134篇
  2008年   216篇
  2007年   219篇
  2006年   209篇
  2005年   183篇
  2004年   159篇
  2003年   121篇
  2002年   139篇
  2001年   78篇
  2000年   73篇
  1999年   63篇
  1998年   45篇
  1997年   31篇
  1996年   30篇
  1995年   40篇
  1994年   35篇
  1993年   27篇
  1992年   24篇
  1991年   39篇
  1990年   32篇
  1989年   27篇
  1988年   6篇
  1987年   16篇
  1986年   6篇
  1985年   13篇
  1984年   12篇
  1983年   13篇
  1982年   9篇
  1980年   18篇
  1979年   10篇
  1978年   9篇
  1977年   23篇
  1976年   8篇
  1975年   10篇
  1974年   9篇
  1972年   8篇
排序方式: 共有3773条查询结果,搜索用时 15 毫秒
61.
The reaction of ethylenediamine with an equivalent mixture of diversely substituted 3-acyltetramic acids leads to Z/Z, Z/E, E/Z and E/E isomers. The E/Z isomerisation is slow in the NMR time scale of the 1H and 13C chemical shifts; therefore at room temperature and in deuterochloroform all isomers of the new synthesized asymmetric compounds N,N′-ethylene-(1-ethyl-5,5-dimethyl-1′,5′,5′-trimethyl-3,3′-acetyltetramic acid) a, N,N′-ethylene-(5,5-dimethyl-1′,5′,5′-trimethyl-3,3′-acetyltetramic acid) b and, N,N′-ethylene-(1,5,5-trimethyl-1′,5′,5′-trimethyl-3-acetyl-3′-formyl-tetramic acid) c could be found in the corresponding spectra. To assign the 13C NMR signals we used two-dimensional 13C-1H one-bond (HMQC) and 13C-1H multibond (HMBC) correlated spectroscopy and the empirical rule that CO signals involved in hydrogen bonds are shifted to a lower field. The relative stability of isomers depending on substitution pattern could be estimated from the composition of the equilibria. b crystallizes as Z/Z isomer from ethanolic solution. The X-ray structural analysis of b has shown two CH-O hydrogen bonds. Received: 31 May 1996 / Revised: 26 June 1996 / Accepted: 1 July 1996  相似文献   
62.
A systematic determination of electronic coupling matrix elements in U-shaped molecules is demonstrated. The unique architecture of these systems allows for the determination of the electronic coupling through a pendant molecular moiety that resides between the donor and acceptor groups; this moiety quantifies the efficiency of electron tunneling through nonbonded contacts. Experimental electron-transfer rate constants and reaction free energies are used to calibrate a molecular-based model that describes the solvation energy. This approach makes it possible to experimentally determine electronic couplings and compare them with computational values.  相似文献   
63.
A method for coupling an electrophoretic driven separation to a liquid flow, using conventional fused-silica capillaries and a soft polymeric interface is presented. A novel design of the electrode providing high voltage to the electrophoretic separation was also developed. The electrode consisted of a conductive polyimide/graphite imbedded coating immobilized onto the capillary electrophoresis (CE) column inlet. This integrated electrode gave the same separation performance as a commonly used platinum electrode. The on-column electrode also showed good electrochemical stability in chronoamperometric experiments. In addition, with this electrode design, the electrode position relative to the inlet end of the CE column will always be constant and well defined. The on-line flow injection analysis (FIA)-CE system was used with electrospray ionization (ESI)-time of flight (TOF)-mass spectrometry detection. The preparation of the PDMS (poly(dimethylsiloxane)) interface for FIA-CE is described in detail and used for initial tests of the on-column polymer-imbedded graphite inlet electrode. In this interface, a pressure-driven liquid flow, a make up CE electrolyte and a CE column inlet meet in a two-level cross (95 microm ID) in the PDMS structure, enabling independent flow characterization.  相似文献   
64.
UT-7 and UT-8 (University of Toronto, structure numbers 7 and 8) are two novel aluminophosphate materials prepared under non-aqueous conditions. Their structures, extended in one and two dimensions, respectively, have been solved by single-crystal X-ray diffraction and characterized by a variety of methods including powder X-ray diffraction (PXRD), insitu high-temperature PXRD, thermogravimetric analysis (TGA), energy dispersive X-ray analysis (EDX), and scanning electron microscopy (SEM). UT-7 ([Al(3)P(5)O(20)H](5)(-)[C(7)H(13)NH(3)(+)](5), triclinic space group P&onemacr;, Z = 2, a = 10.118(3) ?, b = 15.691(4) ?, c = 18.117(3) ?, alpha = 72.91(2) degrees, beta = 85.18(2) degrees, gamma = 79.49(2) degrees ) is built of polymeric one-dimensional chain units, hydrogen-bonded into anionic layers that are charge-compensated by interlamellar cycloheptylammonium cations. UT-7 is isostructural to our previously discovered UT-3 chain structure, isolated in the analogous cyclopentylamine system. UT-8 ([Al(3)P(4)O(16)](3-)[C(4)H(7)NH(3)(+)](2)[C(5)H(10)NH(2)(+)], monoclinic space group P2(1), Z = 2, a = 8.993(4) ?, b = 14.884(8) ?, c = 9.799(9) ?, beta = 103.52(3) degrees ) is a two-dimensional net isostructural to several previously reported [Al(3)P(4)O(16)](3)(-) layers. The interlayer region of UT-8 is occupied by two different cyclic organic amine species, namely piperidinium and cyclobutylammonium. To our knowledge, this is the first report of the crystal structure of an aluminophosphate material containing cyclobutylammonium or a mixture of cyclic amines. Interestingly, UT-7 is observed to thermally transform in the solid state to an as yet unknown layered material that can be independently synthesized in a similar synthetic system. In the same way as UT-3 transforms to the UT-4 layered phase, we believe UT-7 transforms to a layered material by means of a chain to layer transformation.  相似文献   
65.
The ring-closing metathesis reactions (RCM) of six standard diene substrates leading to five-, six-, or seven-membered carbo- or heterocycles were investigated under controlled microwave irradiation. RCM protocols were performed with standard Grubbs type II and a cationic ruthenium allenylidene catalyst in neat and ionic liquid-doped methylene chloride under sealed vessel conditions. Very rapid conversions (15 s) were achieved utilizing 0.5 mol % Grubbs II catalyst under microwave conditions. Careful comparison studies indicate that the observed rate enhancements are not the result of a nonthermal microwave effect.  相似文献   
66.
This paper focuses on the technical aspects of chemical screening from 384-well plate nano-scale single-bead combinatorial libraries. The analytical technique utilized is a combination of capillary liquid chromatography with ultraviolet detection and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The HPLC/MALDI-MS hyphenation is achieved by means of a micro-fraction collector with a peak detection system that automatically collects the peaks onto the MALDI targets for subsequent characterization. Several experimental parameters such as type of 384-well plate, well-plate sealing foils, and a column-switching procedure were investigated using a small test library of nine components. Additionally, the influence of different MALDI matrices, different MALDI targets and sample-spotting techniques on the MALDI detection sensitivity as well as the ruggedness and sample throughput capacity of this technique were studied. Optimum results for the analytes investigated were obtained with 2,5-dihydroxybenzoic acid using on-line mixing of HPLC effluent and matrix solution. To demonstrate the potential of this capillary HPLC/MALDI-TOFMS method, its application to several single-bead libraries was investigated. The instrumental method allowed for the rapid identification and purity assessment of combinatorial libraries with detection limits down to the higher femtomole level using both UV detection and MALDI mass spectrometry.  相似文献   
67.
68.
69.
Mesoporous silica thin films were shown to be an appropriate matrix for immobilization of discrete electroactive moieties, yielding uniform transparent thin film electrodes with defined texture and enhanced electrochemical activity. The mesoporous silica films prepared on conducting FTO-coated glass substrate were postsynthetically functionalized. Alkoxysilanes were used as precursors for subsequent grafting via ionic or covalent bonds of representative electroactive species, such as polyoxometalate PMo12O(40)3-, hexacyanoferrate(III), and ferrocene. The electrochemically active concentration within the silica-based composite electrodes achieves 90, 260, and 60 micromol cm(-3) for polyoxometalate, hexacyanoferrate(III), and ferrocene, respectively. The amount of molecules involved in the charge-transfer sequence is proportional to the film thickness and comparable to the total amount of embedded guests. Thus, eventually the whole bulk volume of the modified silica films is electrochemically accessible. Immobilization in the chemically modified silica matrix alters the redox potential of the electroactive molecules. Electron exchange between the adjacent redox centers (electron hopping) is proposed as a possible charge propagation pathway through the insulating silica matrix, which is supported by the fact that the high charge uptake is observed also for the hybrid electrodes with the covalently anchored redox guests.  相似文献   
70.
The compounds Ce(10)Cl(4)Ga(5) and Ln(3)ClGa(4) (Ln = La, Ce) were synthesized from stoichiometric mixtures of Ln, LnCl(3), and Ga under Ar atmosphere in sealed Ta ampules at 910-1020 degrees C for 25-26 days. Ce(10)Cl(4)Ga(5) is isostructural to La(10)Cl(4)Ga(5) (space group I4/mcm, No. 140) with lattice constants a = 7.9546(11) A, c = 31.793(6) A. Ln(3)ClGa(4) represents a new structural type, also in the space group I4/mcm, with a = 8.1955(8) and 8.1123(11) A, c = 11.363(2) and 11.229(2) A, respectively, for Ln = La and Ce. Ce(10)Cl(4)Ga(5) features building blocks of Ga-centered Ce(6) trigonal prisms and distinctive two-dimensional intermetallic CuAl(2) and U(3)Si(2) type nets. Its electronic structure falls within the realm of reduced rare-earth halides. Ln(3)ClGa(4) also contains the intermetallic CuAl(2) type nets, but the interstitials are inverted: The building blocks are Cl-centered Ln(6) octahedra. Its electronic structure is characterized by strong peripheral Ln-Ga bonding stabilizing the Ln(6)Cl octahedron which normally would have its Ln-Ln antibonding orbitals filled with electrons from interstitials beyond chalcogen. Magnetic susceptibility and conductivity measurements confirm the metallic nature of all three compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号