首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3583篇
  免费   184篇
  国内免费   17篇
化学   2720篇
晶体学   30篇
力学   95篇
综合类   1篇
数学   492篇
物理学   446篇
  2023年   38篇
  2022年   30篇
  2021年   57篇
  2020年   86篇
  2019年   73篇
  2018年   44篇
  2017年   40篇
  2016年   136篇
  2015年   127篇
  2014年   140篇
  2013年   181篇
  2012年   239篇
  2011年   281篇
  2010年   165篇
  2009年   134篇
  2008年   216篇
  2007年   219篇
  2006年   209篇
  2005年   183篇
  2004年   159篇
  2003年   121篇
  2002年   139篇
  2001年   78篇
  2000年   74篇
  1999年   63篇
  1998年   45篇
  1997年   31篇
  1996年   30篇
  1995年   40篇
  1994年   35篇
  1993年   28篇
  1992年   24篇
  1991年   39篇
  1990年   32篇
  1989年   27篇
  1988年   6篇
  1987年   16篇
  1986年   6篇
  1985年   13篇
  1984年   12篇
  1983年   13篇
  1982年   9篇
  1980年   20篇
  1979年   12篇
  1978年   9篇
  1977年   23篇
  1976年   8篇
  1975年   10篇
  1974年   9篇
  1972年   8篇
排序方式: 共有3784条查询结果,搜索用时 15 毫秒
951.
952.
Cellular entry of imaging probes, such as contrast agents for magnetic resonance imaging (MRI), is a key requirement for many molecular imaging studies, particularly imaging intracellular events and cell tracking. Here, we describe the successful development and in vitro analysis of MAGfect, a novel liposome formulation containing a lipidic gadolinium contrast agent for MRI, Gd-DOTA-Chol , designed to enter and label cells. Liposome formulation and cell incubation time were optimised for maximum cellular uptake of the imaging probe in a variety of cell lines. MRI analysis of cells incubated with MAGfect showed them to be highly MRI active. This formulation was examined further for cytotoxicity, cell viability and mechanism of cell labelling. One of the key advantages of using MAGfect as a labelling vehicle arises from its potential for additional functions, such as concomitant drug or gene delivery and fluorescent labelling. The gadolinium liposome was found to be an effective vehicle for transport of plasmid DNA (pDNA) into cells and expression levels were comparable to the commercial transfection agent Trojene.  相似文献   
953.
Intramolecular nitrile oxide-olefin cycloaddition to form hexahydrobenzisoxazole 14, which engenders a phenylsulfonyl, 2,5-difluorophenyl geminally substituted carbon substructure, proceeds with up to 99% ds. A rationalization of the high level of substrate-based stereo-induction observed in this and related ketone and acrylonitrile metallohydride reductions, supported by single crystal X-ray crystallography, is presented.  相似文献   
954.
We report the hydrothermal synthesis and characterization of a layered cobalt phenylphosphonate. Unlike most metal phosphonates reported to date, the structure was solved by single crystal X-ray diffraction (SC-XRD). Co(ii) centres are hexa-coordinated by oxygen and the octahedra corner-share into a layer. The layers are capped by phenylphosphonate groups, where the phenyl groups define a hydrophobic bilayer region. The material was also characterized by powder X-ray diffraction (PXRD), thermogravimetric analysis (TGA) and SQUID (superconducting quantum interference device) magnetometry. The material undergoes an antiferromagnetic transition at a relatively low Néel temperature of 4.0 K, while the Curie-Weiss temperature of -76.5 K reflects the low-dimensionality of the magnetic structure. The effective magnetic moment of 5.01 micro(B) per Co(2+) verifies a high-spin configuration and an octahedral coordination of the metal centres. This layered material was correctly predicted in the literature from powder data, adds to the structural diversity of the cobalt phosphonates, and may be useful as an intercalation or exfoliation compound.  相似文献   
955.
We present a low-temperature scanning tunneling microscopy study on the self-assembly of extended polycyclic aromatic hydrocarbons with different symmetries on the Cu111 surface. All molecules show a commensurate monolayer structure, with significant structural differences with respect to the unit cell of the molecular lattice and the orientational ordering. We find that the molecular lattice and the molecular orientation are largely dominated by molecule-substrate interactions, whereas molecule-molecule interactions determine the molecular packing density via steric repulsion. Moreover, we show that the structure of the monolayer is transferred to the second layer via molecule-molecule interaction.  相似文献   
956.
A detailed atomic-resolution scanning tunneling microscopy (STM) and density functional theory study of the adsorption, dissociation, and surface diffusion of phosphine (PH(3)) on Si(001) is presented. Adsorbate coverages from approximately 0.01 monolayer to saturation are investigated, and adsorption is performed at room temperature and 120 K. It is shown that PH(3) dissociates upon adsorption to Si(001) at room temperature to produce both PH(2) + H and PH + 2H. These appear in atomic-resolution STM images as features asymmetric-about and centered-upon the dimer rows, respectively. The ratio of PH(2) to PH is a function of both dose rate and temperature, and the dissociation of PH(2) to PH occurs on a time scale of minutes at room temperature. Time-resolved in situ STM observations of these adsorbates show the surface diffusion of PH(2) adsorbates (mediated by its lone pair electrons) and the dissociation of PH(2) to PH. The surface diffusion of PH(2) results in the formation of hemihydride dimers on low-dosed Si(001) surfaces and the ordering of PH molecules along dimer rows at saturation coverages. The observations presented here have important implications for the fabrication of atomic-scale P dopant structures in Si, and the methodology is applicable to other emerging areas of nanotechnology, such as molecular electronics, where unambiguous molecular identification using STM is necessary.  相似文献   
957.
X-ray absorption and X-ray photoelectron spectroscopy are used to investigate NaAlH4 doped with 5 mol % of Ti on the basis of either TiCl3 or Ti13.6THF by ball milling. X-ray photoelectron spectroscopy (XPS) analysis of TiCl3 or Ti colloid doped samples indicates that Ti species do not remain on the sample surface but are driven into the material with increasing milling time. The surface concentration of Ti continues to decrease during subsequent cycles under hydrogen. After several cycles, it reaches a constant value of 0.5 at. % independently of the nature of the precursor. Moreover, metallic aluminum is already present at the surface after 2 min of ball milling in the case of TiCl3 doped Na-alanate, whereas it is totally absent in the case of Ti colloid doped samples at any milling time. Upon cycling, the atomic concentration of metallic Al at the surface evolves with the reaction under hydrogen, in contrast to the Ti concentration. Analysis of the binding energies of samples doped with TiCl3 or Ti colloid, after eight desorption/absorption cycles, reveals that the Na, O, and Ti environment remains the same, while the Al environment undergoes changes. According to the extended X-ray absorption fine structure (EXAFS) analysis of TiCl3 doped Na-alanate, the local structure around Ti during the first cycle is close to that of metallic Ti but in a more distorted state. In the case of the Ti colloid doped sample, a stripping of the oxygen shell occurs. After eight cycles, a similar intermetallic phase between Ti and Al is present in the hydrogenated state of TiCl3 or Ti colloid doped samples. The local structure around Ti atoms after eight cycles consists of Al and Ti backscatterers with a Ti-Al distance of 2.79 angstroms and a Ti-Ti distance of 3.88 angstroms. This local structure is not exactly the TiAl3 phase because it differs significantly from the alloy phase in its fine structure and lacks long-range order. Volumetric measurements performed on these samples indicate that the formation of this local structure is responsible for the reduction of the reversible hydrogen capacity with the increasing number of cycles. Moreover, the formation of the alloy-like phase is correlated with a decrease of the desorption/absorption reaction rate.  相似文献   
958.
959.
960.
A review of our recent and ongoing extensive high-pressure synchrotron X-ray diffraction and high-pressure optical spectroscopy studies of nanocrystalline composites is presented. These heterophased, nano-architectured composites consist of amorphous matrices with dispersed nanocrystals or quantum dots. We show how besides compositional variations, additional tuning of these glass-derived nanocomposites can be done by exploiting elevated pressure. We examine stability and pressure-driven phase transitions occurring in nanocrystals as well as structural changes occurring in the glass matrix. Finally, we discuss the influence of the glass matrix of a composite on the structural transformations occurring in the embedded nanocrystals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号