首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3591篇
  免费   165篇
  国内免费   17篇
化学   2708篇
晶体学   30篇
力学   95篇
综合类   1篇
数学   492篇
物理学   447篇
  2023年   39篇
  2022年   38篇
  2021年   56篇
  2020年   86篇
  2019年   73篇
  2018年   44篇
  2017年   40篇
  2016年   136篇
  2015年   125篇
  2014年   140篇
  2013年   181篇
  2012年   234篇
  2011年   278篇
  2010年   165篇
  2009年   134篇
  2008年   216篇
  2007年   219篇
  2006年   209篇
  2005年   183篇
  2004年   159篇
  2003年   121篇
  2002年   139篇
  2001年   78篇
  2000年   73篇
  1999年   63篇
  1998年   45篇
  1997年   31篇
  1996年   30篇
  1995年   40篇
  1994年   35篇
  1993年   27篇
  1992年   24篇
  1991年   39篇
  1990年   32篇
  1989年   27篇
  1988年   6篇
  1987年   16篇
  1986年   6篇
  1985年   13篇
  1984年   12篇
  1983年   13篇
  1982年   9篇
  1980年   18篇
  1979年   10篇
  1978年   9篇
  1977年   23篇
  1976年   8篇
  1975年   10篇
  1974年   9篇
  1972年   8篇
排序方式: 共有3773条查询结果,搜索用时 0 毫秒
991.
992.
The synthesis of a new, cubic M8L6 cage is described. This new assembly was characterised by using NMR spectroscopy, DOSY, TGA, MS, and molecular modelling techniques. Interestingly, the enlarged cavity size of this new supramolecular assembly allows the selective encapsulation of tetra(4‐pyridyl)metalloporphyrins (MII(TPyP), M=Zn, Co). The obtained encapsulated cobalt–porphyrin embedded in the cubic zinc–porphyrin assembly is the first example of a catalytically active encapsulated transition‐metal complex in a cubic M8L6 cage. The substrate accessibility of this system was demonstrated through radical‐trapping experiments, and its catalytic activity was demonstrated in two different radical‐type transformations. The reactivity of the encapsulated CoII(TPyP) complex is significantly increased compared to free CoII(TPyP) and other cobalt–porphyrin complexes. The reactions catalysed by this system are the first examples of cobalt–porphyrin‐catalysed radical‐type transformations involving diazo compounds which occur inside a supramolecular cage.  相似文献   
993.
994.
995.
Radiation induced degradation effects are studied for a model ionic liquid (IL)--[EMIm]Tf(2)N--in order to distinguish in which way the results of X-ray based material analysis methods can be falsified by the radiation supplied by typical X-ray sources itself. Photoelectron spectroscopy is commonly used for determining the electronic structure of ionic liquids. Degradation effects, which often occur e.g. in organic materials during X-ray or electron irradiation, are potentially critical for the interpretation of data obtained from ionic liquids. The changes of the chemical composition as well as the radiation-induced desorption of 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([EMIm]Tf(2)N) fragments are analysed by X-ray photoelectron spectroscopy (XPS) as well as quadrupole mass spectroscopy (QMS) upon exposure to monochromated or non-monochromated AlKα X-rays from typical laboratory sources. During the irradiation of [EMIm]Tf(2)N, an increasing carbon concentration is observed in both cases and especially the [Tf(2)N](-) ion is strongly altered. This observation is supported by the results from the QMS analysis which revealed a variety of different IL fragments that are desorbed during X-ray irradiation. It is shown that the decomposition rate is directly linked to the photon flux on the sample and hence has to be considered when planning an XPS experiment. However, for typical experiments on this particular IL the measurements suggest that the changes are on a larger time scale as typically required for spectra acquisition, in particular if monochromated X-ray sources are used.  相似文献   
996.
Cytochrome c nitrite reductase catalyzes the six-electron reduction of nitrite to ammonia without the release of potential reaction intermediates, such as NO or hydroxylamine. On the basis of the crystallographic observation of reaction intermediates and of density functional calculations, we present a working hypothesis for the reaction mechanism of this multiheme enzyme which carries a novel lysine-coordinated heme group (Fe-Lys). It is proposed that nitrite reduction starts with a heterolytic cleavage of the N-O bond which is facilitated by a pronounced back-bonding interaction of nitrite coordinated through nitrogen to the reduced (Fe(II)) but not the oxidized (Fe(III)) active site iron. This step leads to the formation of an [FeNO](6) species and a water molecule and is further facilitated by a hydrogen bonding network that induces an electronic asymmetry in the nitrite molecule that weakens one N-O bond and strengthens the other. Subsequently, two rapid one-electron reductions lead to an [FeNO](8) form and, by protonation, to an Fe(II)-HNO adduct. Hereafter, hydroxylamine will be formed by a consecutive two-electron two-proton step which is dehydrated in the final two-electron reduction step to give ammonia and an additional water molecule. A single electron reduction of the active site closes the catalytic cycle.  相似文献   
997.
Reaction of tetramethoxysilane with three molar equivalents of oxalic acid and two molar equivalents of 1‐(2‐hydroxyethyl)‐pyrrolidine or 1‐(2‐hydroxyethyl)piperidine in tetrahydrofuran yielded the λ6Si‐silicates 1‐(2‐hydroxyethyl)pyrrolidinium tris[oxalato(2—)]silicate ( 4 ) and 1‐(2‐hydroxyethyl)piperidinium tris[oxalato(2—)]silicate ( 5 ). The related germanium compounds 1‐(2‐hydroxyethyl)piperidinium tris[oxalato(2—)]germanate ( 6 ) and triethylammonium tris[oxalato(2—)]germanate ( 7 ) were synthesized analogously, starting from tetramethoxygermane and using three molar equivalents of oxalic acid and two molar equivalents of 1‐(2‐hydroxyethyl)piperidine or triethylamine. Compounds 4 — 7 were characterized by elemental analyses (C, H, N), single‐crystal X‐ray diffraction, solid‐state VACP/MAS NMR spectroscopy (29Si), and solution NMR spectroscopy (1H, 13C, 29Si). The structural characterization was complemented by computational studies of the tris[oxalato(2—)]silicate dianion and the tris[oxalato(2—)]germanate dianion. In addition, the stability of compounds 4 — 7 in aqueous solution was studied by 13C NMR spectroscopy.  相似文献   
998.
In this paper we systematically analyze the electronic structures of polar and nonpolar wurtzite-InN/GaN quantum dots and their modification due to the quantum-confined Stark effect caused by intrinsic fields. This is achieved by combining continuum elasticity theory with an effective-bond orbital model to describe the elastic and single-particle electronic properties in these nitride systems. Based on these results, a many-body treatment is used to determine optical absorption spectra. The efficiency of optical transitions depends on the interplay between the Coulomb interaction and the quantum-confined Stark effect. We introduce an effective confinement potential which represents the electronic structure under the influence of the intrinsic polarization fields and calculate the needed strength of Coulomb interaction to diminish the separation of electrons and holes.  相似文献   
999.
Atom-atom interaction potential energies derived from various sources have been used to calculate the torsional lattice vibration frequencies of crystalline benzene. The results are compared with available experimental data. The usefulness of this type of model potential is discussed.  相似文献   
1000.
A rumor spreading model with the consideration of forgetting rate changing over time is examined in small-world networks. The mean-field equations are derived to describe the dynamics of rumor spreading in small-world networks. Further, numerical solutions are conducted on LiveJournal, an online social blogging platform, to better understand the performance of the model. Results show that the forgetting rate has a significant impact on the final size of rumor spreading: the larger the initial forgetting rate or the faster the forgetting speed, the smaller the final size of the rumor spreading. Numerical solutions also show that the final size of rumor spreading is much larger under a variable forgetting rate compared to that under a constant forgetting rate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号