首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   3篇
  国内免费   1篇
化学   55篇
晶体学   1篇
数学   21篇
物理学   26篇
  2023年   1篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   5篇
  2013年   4篇
  2012年   6篇
  2011年   10篇
  2010年   9篇
  2009年   2篇
  2008年   6篇
  2007年   7篇
  2006年   6篇
  2005年   12篇
  2004年   6篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
排序方式: 共有103条查询结果,搜索用时 0 毫秒
101.
102.
Polyaniline (PANI) base was protonated in aqueous solutions of an organic acid, 3-nitro-1,2,4-triazol-5(4H)-one (NTO). The temperature dependence of DC conductivity of PANI-NTO seems to correspond to the theory of variable range hopping (VRH) in three dimensions. The frequency dependence of AC conductivity also reflects the hopping nature of mobile charges. The activation energy for the polymers with protonation degree above 0.12 remains constant with increasing dopant concentration and DC conductivity. The value of this constant may correspond to the energy needed for the ionization of dopant counterion. The fit of the electric relaxation function to the stretched exponential function ϕ(t) = exp[−(t/τ)β] gives the stretch parameter β about 0.35, which shows that the distribution of relaxation times is broad and indicates a high inhomogeneity in the distribution of a dopant.  相似文献   
103.
For θ ( 0 , 1 ) $\theta \in (0,1)$ and variable exponents p 0 ( · ) , q 0 ( · ) $p_0(\cdot ),q_0(\cdot )$ and p 1 ( · ) , q 1 ( · ) $p_1(\cdot ),q_1(\cdot )$ with values in [1, ∞], let the variable exponents p θ ( · ) , q θ ( · ) $p_\theta (\cdot ),q_\theta (\cdot )$ be defined by 1 / p θ ( · ) : = ( 1 θ ) / p 0 ( · ) + θ / p 1 ( · ) , 1 / q θ ( · ) : = ( 1 θ ) / q 0 ( · ) + θ / q 1 ( · ) . $$\begin{equation*} 1/p_\theta (\cdot ):=(1-\theta )/p_0(\cdot )+\theta /p_1(\cdot ), \quad 1/q_\theta (\cdot ):=(1-\theta )/q_0(\cdot )+\theta /q_1(\cdot ). \end{equation*}$$ The Riesz–Thorin–type interpolation theorem for variable Lebesgue spaces says that if a linear operator T acts boundedly from the variable Lebesgue space L p j ( · ) $L^{p_j(\cdot )}$ to the variable Lebesgue space L q j ( · ) $L^{q_j(\cdot )}$ for j = 0 , 1 $j=0,1$ , then T L p θ ( · ) L q θ ( · ) C T L p 0 ( · ) L q 0 ( · ) 1 θ T L p 1 ( · ) L q 1 ( · ) θ , $$\begin{equation*} \Vert T\Vert _{L^{p_\theta (\cdot )}\rightarrow L^{q_\theta (\cdot )}} \le C \Vert T\Vert _{L^{p_0(\cdot )}\rightarrow L^{q_0(\cdot )}}^{1-\theta } \Vert T\Vert _{L^{p_1(\cdot )}\rightarrow L^{q_1(\cdot )}}^{\theta }, \end{equation*}$$ where C is an interpolation constant independent of T. We consider two different modulars ϱ max ( · ) $\varrho ^{\max }(\cdot )$ and ϱ sum ( · ) $\varrho ^{\rm sum}(\cdot )$ generating variable Lebesgue spaces and give upper estimates for the corresponding interpolation constants Cmax and Csum, which imply that C max 2 $C_{\rm max}\le 2$ and C sum 4 $C_{\rm sum}\le 4$ , as well as, lead to sufficient conditions for C max = 1 $C_{\rm max}=1$ and C sum = 1 $C_{\rm sum}=1$ . We also construct an example showing that, in many cases, our upper estimates are sharp and the interpolation constant is greater than one, even if one requires that p j ( · ) = q j ( · ) $p_j(\cdot )=q_j(\cdot )$ , j = 0 , 1 $j=0,1$ are Lipschitz continuous and bounded away from one and infinity (in this case, ϱ max ( · ) = ϱ sum ( · ) $\varrho ^{\rm max}(\cdot )=\varrho ^{\rm sum}(\cdot )$ ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号