排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
The axial resolution of optical coherence tomography images is primarily dependent on the bandwidth of the illumination source. Continuum generation is one way to generate the single-mode, high-bandwidth light needed for point illumination. We present an inexpensive and easy-to-implement augmentation to a Ti:sapphire laser that widens the bandwidth from 20 to over 200 nm with commerically available ultrahigh-numerical-aperture fiber. This technique can provide a readily available broad-bandwidth source for researchers and a practical enhancement to a fiber-optic optical coherence tomography system. 相似文献
2.
This paper presents laboratory-scale experimental results of the behavior of ferrofluids in porous media consisting of sands and sediments. Ferrofluids are colloidal suspensions of magnetic particles stabilized in various carrier liquids. In the presence of an external magnetic field, a ferrofluid becomes magnetized as the particles align with the magnetic field. We investigate the potential for controlling fluid emplacement in porous media using magnetic fields. These experiments show that in laboratory-scale porous media experiments (up to 0.25m), with both vertical gravitational forces and lateral magnetic forces acting simultaneously, the magnetic field produces strong attractive forces on the ferrofluid, particularly in the vicinity of the magnet. These holding forces result in a predictable configuration of the fluid in the porous medium which is dependent on the magnetic field and independent of flow pathway or heterogeneity of the porous medium. No significant retention effects due to flow through variably saturated sands are observed. While the proposed field engineering applications of ferrofluids are promising, the observations to date are particularly relevant at the laboratory scale where the decrease in magnetic field strength with distance from a magnet is less of a limitation than in larger scale applications. Ferrofluids may find immediate application in any situation where it is desirable to control the motion or final configuration of fluid in an experimental flow apparatus without direct physical contact. 相似文献
3.
R. Mateva KR. Zhilkova G. Zamfirova R. Díaz‐Calleja A. Garcia‐Bernabé 《Journal of Polymer Science.Polymer Physics》2010,48(23):2518-2529
The molecular dynamics of new poly (ω‐dodecalactam‐co‐ε‐caprolactam‐co‐propylene oxide) copolymers (DL/CL/PAC) has been investigated by using dynamic mechanical thermal analysis (DMTA) and dielectric relaxation spectroscopy (DRS) measurements. The copolymers were synthesized via anionic polymerization of relevant lactams activated with carbamoyl derivatives of telechelic hydroxyl terminated polypropylene oxide with isophorone diisocyanate (PAC). The calorimetric, X‐ray diffraction, and DMTA measurements were performed to recognize the influence of the composition ratio and the type of PAC on the physical, thermal, and mechanical properties of the synthesized copolymers. The DRS was used to study the frequency dependence of the dielectric permittivity of some isotherms from ?110 to 145 °C. Copolymerization of ε‐caprolactam with about 10 wt % ω‐dodecalactam results in a copolymer that has lower water absorption, a melting point close to that of polyamide 6 and has a high enough degree of crystallinity in respect to high storage modulus. Five dielectric relaxations have been observed in the dielectric spectra, three at lower temperature and two at higher temperature. The copolymers have two glass transition temperatures for polyamide segments and polyether blocks, indicating microphase separation in the copolymers. Other studies directed toward molecular dynamics of polyamide DL/CL/PAC copolymers have not been reported. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2010 相似文献
4.
Thermohaline convection occurs in hypersaline geothermal systems due to thermal and salinity effects on liquid density. Because of its importance in oceanography, thermohaline convection in viscous liquids has received more attention than thermohaline convection in porous media. The fingered and layered convection patterns observed in viscous liquid thermohaline convection have been hypothesized to occur also in porous media. However, the extension of convective dynamics from viscous liquid systems to porous media systems is complicated by the presence of the solid matrix in porous media. The solid grains cause thermal retardation, hydrodynamic dispersion, and permeability effects. We present simulations of thermohaline convection in model systems based on the Salton Sea Geothermal System, California, that serve to point out the general dynamics of porous media thermohaline convection in the diffusive regime, and the effects of porosity and permeability, in particular. We use the TOUGH2 simulator with residual formulation and fully coupled solution technique for solving the strongly coupled equations governing thermohaline convection in porous media. We incorporate a model for brine density that takes into account the effects of NaCl and CaCl2. Simulations show that in forced convection, the increased pore velocity and thermal retardation in low-porosity regions enhances brine transport relative to heat transport. In thermohaline convection, the heat and brine transport are strongly coupled and enhanced transport of brine over heat cannot occur because buoyancy caused by heat and brine together drive the flow. Random permeability heterogeneity has a limited effect if the scale of flow is much larger than the scale of permeability heterogeneity. For the system studied here, layered thermohaline convection persists for more than one million years for a variety of initial conditions. Our simulations suggest that layered thermohaline convection is possible in hypersaline geothermal systems provided the vertical permeability is smaller than the horizontal permeability, as is likely in sedimentary basins such as the Salton Trough. Layered thermohaline convection can explain many of the observations made at the Salton Sea Geothermal System over the years. 相似文献
5.
6.
Expansion in the supply of intermittent renewable energy sources on the electricity grid can potentially benefit from implementation of large-scale compressed air energy storage in porous media systems (PM-CAES) such as aquifers and depleted hydrocarbon reservoirs. Despite a large government research program 30 years ago that included a test of air injection and production in an aquifer, and an abundance of literature on CAES mostly relevant to caverns, there remain fundamental questions about the hydrologic and energetic performance of PM-CAES. We have developed rigorous simulation capabilities for PM-CAES that include modeling the coupled wellbore–reservoir system. Through consideration of a prototypical PM-CAES wellbore–reservoir system representing a depleted hydrocarbon reservoir, we have simulated 100 daily cycles of PM-CAES. We find that (1) PM-CAES can store energy but that pervasive pressure gradients in PM-CAES result in spatially variable energy storage density in the reservoir, (2) the wellbore–reservoir storage component of PM-CAES is very efficient, (3) cap-rock and hydrologic seals along with proper sizing of the PM-CAES reservoir prevent excess pressure diffusion from being a problem, and (4) injection and production of air does not significantly mobilize residual liquid water in the reservoir. 相似文献
7.
8.
J. Eman K.G. Sundin M. Oldenburg 《International Journal of Solids and Structures》2009,46(13):2750-2756
In this work plastic strain localization, also referred to as necking, of press-hardened ultra-high strength steel is observed using digital speckle correlation. The region of the neck is studied during tensile tests of specimens specially designed to facilitate strain localization at an inner point of the material, thus avoiding edge effects on localization and fracture. By using measurements with a length scale small enough to properly resolve the neck, its growth and shape can be studied. Furthermore, the anisotropy of the material is investigated by examining specimens cut out at different angles to the rolling direction. It is seen that the local fracture strain of specimens cut out along the rolling direction is approximately twice as high as it is for specimens cut out perpendicular to the rolling direction. 相似文献
9.
Upward displacement of brine from deep reservoirs driven by pressure increases resulting from CO2 injection for geologic carbon sequestration may occur through improperly sealed abandoned wells, through permeable faults, or through permeable channels between pinch-outs of shale formations. The concern about upward brine flow is that, upon intrusion into aquifers containing groundwater resources, the brine may degrade groundwater. Because both salinity and temperature increase with depth in sedimentary basins, upward displacement of brine involves lifting fluid that is saline but also warm into shallower regions that contain fresher, cooler water. We have carried out dynamic simulations using TOUGH2/EOS7 of upward displacement of warm, salty water into cooler, fresher aquifers in a highly idealized two-dimensional model consisting of a vertical conduit (representing a well or permeable fault) connecting a deep and a shallow reservoir. Our simulations show that for small pressure increases and/or high-salinity-gradient cases, brine is pushed up the conduit to a new static steady-state equilibrium. On the other hand, if the pressure rise is large enough that brine is pushed up the conduit and into the overlying upper aquifer, flow may be sustained if the dense brine is allowed to spread laterally. In this scenario, dense brine only contacts the lower-most region of the upper aquifer. In a hypothetical case in which strong cooling of the dense brine occurs in the upper reservoir, the brine becomes sufficiently dense that it flows back down into the deeper reservoir from where it came. The brine then heats again in the lower aquifer and moves back up the conduit to repeat the cycle. Parameter studies delineate steady-state (static) and oscillatory solutions and reveal the character and period of oscillatory solutions. Such oscillatory solutions are mostly a curiosity rather than an expected natural phenomenon because in nature the geothermal gradient prevents the cooling in the upper aquifer that occurs in the model. The expected effect of upward brine displacement is either establishment of a new hydrostatic equilibrium or sustained upward flux into the bottom-most region of the upper aquifer. 相似文献
10.
We introduce a novel contrast mechanism for optical coherence tomography (OCT) whereby the optical scattering of magnetically labeled cells is modified by means of an externally applied magnetic field. This modification is made through the addition of a small electromagnet to the imaging arm of a conventional OCT interferometer. We measure the magnetomotive OCT signal by differencing pairs of axial scans (A-scans) acquired with the magnetic field on and off. Magnetomotive contrast is demonstrated in bulk three-dimensional cell scaffolds containing macrophages labeled with microparticles of iron oxide, demonstrating magnetic-specific contrast over a dynamic range of 30 dB. 相似文献