首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1562篇
  免费   67篇
  国内免费   4篇
化学   1188篇
晶体学   17篇
力学   32篇
数学   83篇
物理学   313篇
  2023年   15篇
  2022年   44篇
  2021年   53篇
  2020年   40篇
  2019年   30篇
  2018年   36篇
  2017年   43篇
  2016年   53篇
  2015年   45篇
  2014年   71篇
  2013年   105篇
  2012年   148篇
  2011年   152篇
  2010年   73篇
  2009年   55篇
  2008年   94篇
  2007年   92篇
  2006年   82篇
  2005年   98篇
  2004年   63篇
  2003年   62篇
  2002年   39篇
  2001年   28篇
  2000年   12篇
  1999年   11篇
  1998年   4篇
  1997年   11篇
  1996年   6篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   4篇
  1988年   4篇
  1987年   3篇
  1986年   4篇
  1985年   4篇
  1984年   2篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1977年   3篇
  1976年   3篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1964年   2篇
  1961年   2篇
排序方式: 共有1633条查询结果,搜索用时 0 毫秒
41.
Density functional theory and ab initio calculations were performed to elucidate the hydrogen interactions in (H2O4)n (n = 1–4) clusters. The optimized geometries, binding energies, and harmonic vibrational frequencies were predicted at various levels of theory. The trans conformer of the H2O4 monomer was predicted to be the most stable structure at the CCSD(T)/aug‐cc‐pVTZ level of theory. The binding energies per H2O4 monomer increased in absolute value by 9.0, 10.1, and 11.8 kcal/mol from n = 2 to n = 4 at the MP2/cc‐pVTZ level of theory (after the zero‐point vibrational energy and basis set superposition error corrections). This result implies that the intermolecular hydrogen bonds were stronger in the long‐chain clusters, that is, the formation of the longer chain in the (H2O4)n clusters was more energetically favorable.  相似文献   
42.
43.
44.
We report a new two-photon fluorescence turn-on probe 6-[(E)-3-oxo-1-dodecenyl]-2-[N-methyl-N-(carboxymethyl)amino]naphthalene (CL2) that is designed specifically for visualizing lipid rafts in living cells and tissues. This probe emits much brighter two-photon excited fluorescence in lipid rafts than in non-raft domains and allows direct visualization of the lipid rafts in the live cells and pyramidal neuron layer of the CA1 region at a depth of 100-250 mum in live tissues using two-photon microscopy.  相似文献   
45.
Elevated heart rate has been proposed as an independent risk factor for cardiovascular diseases, but their interrelationships are not well understood. In this study, we performed a genome-wide linkage scan in 1,026 individuals (mean age 30.6 years, 54.5% women) from 73 extended families of Mongolia and determined quantitative trait loci that influence heart rate. The DNA samples were genotyped using deCODE 1,039 microsatellite markers for 3 cM density genome-wide linkage scan. Correlation analysis was carried out to evaluate the correlation of the covariates and the heart rate. T-tests of the heart rate were also performed on sex, smoking and alcohol intake. Consequently, this model was used in a nonparametric genome-wide linkage analysis using variance component model to create a multipoint logarithm of odds (LOD) score and a corresponding P value. In the adjusted model, the heritability of heart rate was estimated as 0.32 (P<.0001) and a maximum multipoint LOD score of 2.03 was observed in 77 cM region at chromosome 18. The second largest LOD score of 1.52 was seen on chromosome 5 at 216 cM. Genes located on the specified locations in chromosomes 5 and 18 may be involved in the regulation of heart rate.  相似文献   
46.
A new donor moiety, 7,7,13,13‐tetramethyl‐7,13‐dihydro‐5H‐indeno[1,2‐b]acridine (IAc), was developed to control the highest occupied molecular orbital (HOMO) dispersion of thermally activated delayed fluorescent (TADF) emitters. The IAc unit expanded the HOMO dispersion of the emitters and increased the quantum efficiency of the TADF devices up to 20.9 %.  相似文献   
47.
The transplantation of neural precursor cells (NPCs) is known to be a promising approach to ameliorating behavioral deficits after stroke in a rodent model of middle cerebral artery occlusion (MCAo). Previous studies have shown that transplanted NPCs migrate toward the infarct region, survive and differentiate into mature neurons to some extent. However, the spatiotemporal dynamics of NPC migration following transplantation into stroke animals have yet to be elucidated. In this study, we investigated the fates of human embryonic stem cell (hESC)-derived NPCs (ENStem-A) for 8 weeks following transplantation into the side contralateral to the infarct region using 7.0T animal magnetic resonance imaging (MRI). T2- and T2*-weighted MRI analyses indicated that the migrating cells were clearly detectable at the infarct boundary zone by 1 week, and the intensity of the MRI signals robustly increased within 4 weeks after transplantation. Afterwards, the signals were slightly increased or unchanged. At 8 weeks, we performed Prussian blue staining and immunohistochemical staining using human-specific markers, and found that high percentages of transplanted cells migrated to the infarct boundary. Most of these cells were CXCR4-positive. We also observed that the migrating cells expressed markers for various stages of neural differentiation, including Nestin, Tuj1, NeuN, TH, DARPP-32 and SV38, indicating that the transplanted cells may partially contribute to the reconstruction of the damaged neural tissues after stroke. Interestingly, we found that the extent of gliosis (glial fibrillary acidic protein-positive cells) and apoptosis (TUNEL-positive cells) were significantly decreased in the cell-transplanted group, suggesting that hESC-NPCs have a positive role in reducing glia scar formation and cell death after stroke. No tumors formed in our study. We also performed various behavioral tests, including rotarod, stepping and modified neurological severity score tests, and found that the transplanted animals exhibited significant improvements in sensorimotor functions during the 8 weeks after transplantation. Taken together, these results strongly suggest that hESC-NPCs have the capacity to migrate to the infarct region, form neural tissues efficiently and contribute to behavioral recovery in a rodent model of ischemic stroke.  相似文献   
48.
We report the synthesis of high-entropy-alloy (HEA) nanoparticles (NPs) consisting of five platinum group metals (Ru, Rh, Pd, Ir and Pt) through a facile one-pot polyol process. We investigated the electronic structure of HEA NPs using hard X-ray photoelectron spectroscopy, which is the first direct observation of the electronic structure of HEA NPs. Significantly, the HEA NPs possessed a broad valence band spectrum without any obvious peaks. This implies that the HEA NPs have random atomic configurations leading to a variety of local electronic structures. We examined the hydrogen evolution reaction (HER) and observed a remarkably high HER activity on HEA NPs. At an overpotential of 25 mV, the turnover frequencies of HEA NPs were 9.5 and 7.8 times higher than those of a commercial Pt catalyst in 0.05 M H2SO4 and 1.0 M KOH electrolytes, respectively. Moreover, the HEA NPs showed almost no loss during a cycling test and were much more stable than the commercial Pt catalyst. Our findings on HEA NPs may provide a new paradigm for the design of catalysts.

RuRhPdIrPt high-entropy-alloy nanoparticles with a broad and featureless valence band spectrum show high hydrogen evolution reaction activity.  相似文献   
49.
We demonstrate a template-free synthetic approach for the preparation of a highly conductive Cu/Cu(2)O nanocomposite electrode by a chemical reduction process. Cu(2)O octahedra were prepared through chemical dehydrogenation of as-synthesized Cu(OH)(2) nanowire precursors. To provide a sufficiently electron-conducting network, the Cu(2)O particles were transformed into Cu/Cu(2)O nanocomposites by an intentional reduction process. The Cu/Cu(2)O nanocomposite electrodes showed enhanced cycling performance compared to Cu(2)O particles. Furthermore, their rate capabilities were superior to those of their mechanically mixed Cu/Cu(2)O counterparts. This enhanced electrochemical performance of the hybrid Cu/Cu(2)O nanocomposites was ascribed to the formation of homogeneous nanostructures, offering an efficient electron-transport path provided by the presence of highly dispersed Cu nanoparticles.  相似文献   
50.
This study describes the development of a microfluidic device for the high-throughput screening of culture conditions, such as the optimum sodium acetate concentration for promoting rapid growth and high lipid accumulation of Chlamydomonas reinhardtii. An analysis of the microalgal growth on the microfluidic device revealed an optimum sodium acetate concentration of 5.72 g L?1. The lipid content, determined by the 4,4-Difluoro-1,3,5,7-tetramethyl-4-bora-3a,4a-diaza-s-indacene (BODIPY® 505/515) staining method, increased with the sodium acetate concentration. The results were found to be statistically reproducible with respect to cell growth and lipid production. Other nutrient conditions, including the nitrogen and phosphorus concentrations, can also be optimized on the same microfluidic platform. The microfluidic device performance results agreed well with the results obtained from the flask-scale experiments, validating that the culture conditions were scalable. Finally, we, for the first time, established a method for the absolute quantification of the microalgal lipid content in the picoliter culture volumes by comparing the on-chip and off-chip data. In conclusion, we successfully demonstrated the high-throughput screening of sodium acetate concentrations that induced high growth rates and high lipid contents in C. reinhardtii cells on the microfluidic device.
Figure
We have developed a microfluidic device for the high-throughput screening of culture conditions for promoting rapid growth and high lipid accumulation of Chlamydomonas reinhardtii  相似文献   
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号