This study describes the facile synthesis of platinum nanoparticle-containing porous carbons (Pt/C) by carbonization of freeze-dried agarose gels containing potassium tetrachloroplatinate under a nitrogen atmosphere at 800 °C. By adjusting the ratio between agarose and platinate in the freeze-dried gels, the Pt content in the final Pt/C products could be systematically varied from 0–10 wt.%. Transmission electron microscopy, inductively coupled plasma atomic emission spectrometry, X-ray photoelectron spectroscopy, Raman spectroscopy, and nitrogen physisorption measurements revealed that the Pt/C materials obtained by this method possess high surface areas (350–500 m2 g−1), narrow Pt nanoparticle size distributions (6 ± 3 nm) and nanocrystalline graphite –like carbon character. By immobilization of glucose oxidase on the surface of a 4 wt.% Pt/C electrocatalyst prepared by this route, a very sensitive amperometric glucose biosensor was obtained (response time <2 min, sensitivity 1.9 mA M−1; and a linear response with glucose concentration up to 10 mM). The simplicity and versatility of the described synthetic method suggests its application to the preparation of carbon supported noble metal catalysts including palladium/C and gold/C.
A Ti-based oxysulfide, Sm(2)Ti(2)S(2)O(5), was studied as a visible light-driven photocatalyst. Under visible light (440 nm < or = lambda < or = 650 nm) irradiation, Sm(2)Ti(2)S(2)O(5) with a band gap of approximately 2 eV evolved H(2) or O(2) from aqueous solutions containing a sacrificial electron donor (Na(2)S-Na(2)SO(3) or methanol) or acceptor (Ag(+)) without any noticeable degradation. This oxysulfide is, therefore, a stable photocatalyst with strong reduction and oxidation abilities under visible-light irradiation. The electronic band structure of Sm(2)Ti(2)S(2)O(5) was calculated using the plane-wave-based density functional theory (DFT) program. It was elucidated that the S3p orbitals constitute the upper part of the valence band and these orbitals make an essential contribution to the small band gap energy. The conduction and valence bands' positions of Sm(2)Ti(2)S(2)O(5) were also determined by electrochemical measurements. It indicated that conduction and valence bands were found to have satisfactory potentials for the reduction of H(+) to H(2) and the oxidation of H(2)O to O(2) at pH = 8. This is consistent with the results of the photocatalytic reactions. 相似文献
Trypanocidal constituents of dried leaves of Laurus nobilis L. (Lauraceae) were examined. Activity-guided fractionation of the methanol extract resulted in the isolation of two guaianolides, dehydrocostus lactone (1) and zaluzanin D (2), and a new p-menthane hydroperoxide, (1R,4S)-1-hydroperoxy-p-menth-2-en-8-ol acetate (3). The minimum lethal concentrations of these compounds against epimastigotes of Trypanosoma cruzi were 6.3, 2.5, and 1.4 microM, respectively. 相似文献
Abstract: The role of metallothionein (MT) in protecting skin cells against UVB irradiation was investigated. Fibroblast strains from normal adult (HS-K) and neonatal (NB1RGB) human skins as well as keratinocyte strains from human skin (SV40-HSK) and newborn Balb/c mouse skin (Pam 212) were exposed to UVB irradiation. The sensitivity of HS-K and NB1RGB cells to UVB irradiation was similar; those of SV40-HSK and Pam 212 cells were two- and six-fold as sensitive to UVB irradiation as HS-K cells, respectively. The HS-K cells contained the greatest cellular reduced form of glutathione (GSH) levels compared to the three other skin cells: the levels were 13-, 7- and 6-fold of those in NB1RGB, SV40-HSK and Pam 212 cells, respectively. These results indicated that the sensitivity of skin cells to UVB irradiation was not always associated with their endogenous GSH levels. In particular, despite the fact that NB1RGB cells contained a relatively small amount of GSH, they were less sensitive to UVB irradiation. NB1RGB cells contained 4–30 times more MT than those in other skin cells examined. The sulfhydryl residues of MT molecules in the NB1RGB cells were estimated to be mostly unoccupied by metals, suggesting they act in a similar way to those of GSH. Moreover, NB1RGB cells in which the MT content was elevated by dexamethasone (1 μ M ) or Zn2+ (7 μg/mL) treatment were more resistant to UVB irradiation than nontreated ones. These results suggest that, at least in neonatal human skin fibroblasts, MT may play a role in protection against UVB irradiation. 相似文献
The confined space synthesis method has been applied to the preparation of sodium tantalate (NaTaO(3)); hydrothermal reaction of NaOH and Ta(2)O(5) was carried out in the pores of a three-dimensional mesoporous carbon, which was replicated by the colloidal array of silica nanospheres (SNSs) 20 nm in size. This approach led to the formation of a colloidal array of NaTaO(3) nanoparticles 20 nm in size with a surface area of 34 m(2) g(-1). The photocatalytic performance of the colloidal array of NaTaO(3) nanoparticles for overall water splitting under UV irradiation (λ > 200 nm) was evaluated after loading a NiO cocatalyst onto NaTaO(3) samples. The NiO-loaded NaTaO(3) nanoparticles showed photocatalytic activity for overall water splitting more than three times as high as non-structured bulk NaTaO(3) particles. 相似文献
Thermotropic bicontinuous cubic (Cub(bi)) liquid-crystalline (LC) compounds based on a polymerizable ammonium moiety complexed with a lithium salt have been designed to obtain lithium ion-conductive all solid polymeric films having 3D interconnected ionic channels. The monomer shows a Cub(bi) phase from -5 to 19 °C on heating. The complexes retain the ability to form the Cub(bi) LC phase. They also form hexagonal columnar (Col(h)) LC phases at temperatures higher than those of the Cub(bi) phases. The complex of the monomer and LiBF(4) at the molar ratio of 4:1 exhibits the Cub(bi) and Col(h) phases between -6 to 19 °C and 19 to 56 °C, respectively, on heating. The Cub(bi) LC structure formed by the complex has been successfully preserved by in situ photopolymerization through UV irradiation in the presence of a photoinitiator. The resultant nanostructured film is optically transparent and free-standing. The X-ray analysis of the film confirms the preservation of the self-assembled nanostructure. The polymer film with the Cub(bi) LC nanostructure exhibits higher ionic conductivities than the polymer films obtained by photopolymerization of the complex in the Col(h) and isotropic phases. It is found that the 3D interconnected ionic channels derived from the Cub(bi) phase function as efficient ion-conductive pathways. 相似文献
Niobic acid, Nb(2)O(5)·nH(2)O, has been studied as a heterogeneous Lewis acid catalyst. NbO(4) tetrahedra, Lewis acid sites, on Nb(2)O(5)·nH(2)O surface immediately form NbO(4)-H(2)O adducts in the presence of water. However, a part of the adducts can still function as effective Lewis acid sites, catalyzing the allylation of benzaldehyde with tetraallyl tin and the conversion of glucose into 5-(hydroxymethyl)furfural in water. 相似文献
Molecular dynamics simulations have been performed to study the glass transition for the soft core system with a pair potential φ(n)(r) = ε(σ∕r)(n) of n = 12. Using the compressibility factor, PV/Nk(B)T=P?(ρ*), its phase diagram can be represented as a function of a reduced density, ρ? = ρ(ε∕k(B)T)(3∕n), where ρ = Nσ(3)∕V. In the present work, NVE relaxations to the glassy or crystalline states starting from the unstable states in the phase diagram have been revisited in details and compared with other processes. Relaxation processes can be characterized by the time dependence of the dynamical compressibility factor (PV/Nk(B)T)(t)?(≡g(ρ(t)*)) on the phase diagram. In some cases, g(ρ(t)*) reached a crystal branch in the phase diagram; however, metastable states are found in many cases. With connecting points for the metastable states in the phase diagram, we can define a glass branch where the dynamics of particles are almost frozen. The structures observed there have common properties characterized as glasses. Although overlaps of glass forming process and nanocrystallization process are observed in some cases, these behaviors are distinguishable to each other by the characteristics of structures. There are several routes to the glass branch and we suggest that all of them are the glass transition. 相似文献
A series of selenium and tellurium bis(carbodithioates and carbothioates) were synthesized. X-Ray structure analysis revealed that Se(SSCC(6)H(4)OMe-2)(2), Te(SSCC(6)H(4)OMe-2)(2) and Te(SSCC(6)H(4)Me-4)(2) have trapezoidal-planar configuration of ES(4) (E = Se, Te) and despite the larger atomic radii, the C=S···Te distances in Te(SSCC(6)H(4)OMe-2)(2) are comparable to those in the corresponding selenium derivatives Se(SSCC(6)H(4)OMe-2)(2). Molecular-orbital calculations performed on compounds E(E'SCR)(2) (E = S, Se, Te; E' = O, S; R = Me, Ph, C(6)H(4)OMe-2) showed that the syn-conformers of Se(SSCR)(2) and Te(SSCR)(2) are more stable than the corresponding anti-ones, while, in the case of carbothioic acid derivatives, E(SOCR)(2) showed that their anti-conformers are all more stable than the corresponding syn-ones. Natural bond orbital (NBO) analyses of these dithio-compounds revealed that two types of orbital interactions, n(S(1))→σ*(E-S(2)) and n(O)→σ*(E-S(2)), play a role in the bonding of E[S(2)S(1)CC(6)H(4)OMe-2](2) (E = Se, Te) and the former play a particularly predominant role. 相似文献