首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   837篇
  免费   96篇
  国内免费   4篇
化学   730篇
晶体学   1篇
力学   16篇
数学   83篇
物理学   107篇
  2024年   3篇
  2023年   32篇
  2022年   34篇
  2021年   49篇
  2020年   71篇
  2019年   80篇
  2018年   29篇
  2017年   19篇
  2016年   73篇
  2015年   52篇
  2014年   35篇
  2013年   66篇
  2012年   47篇
  2011年   61篇
  2010年   25篇
  2009年   16篇
  2008年   34篇
  2007年   20篇
  2006年   29篇
  2005年   25篇
  2004年   15篇
  2003年   13篇
  2002年   10篇
  2001年   9篇
  2000年   9篇
  1999年   6篇
  1997年   3篇
  1996年   5篇
  1995年   4篇
  1994年   4篇
  1992年   4篇
  1991年   4篇
  1988年   2篇
  1985年   4篇
  1984年   5篇
  1982年   2篇
  1979年   2篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   3篇
  1973年   2篇
  1934年   2篇
  1932年   2篇
  1931年   2篇
  1930年   2篇
  1928年   2篇
  1919年   1篇
  1913年   1篇
  1894年   1篇
排序方式: 共有937条查询结果,搜索用时 11 毫秒
41.
The intramolecular aryl–phenyl scrambling reaction within palladium–DPPP–aryl complex (DPPP=1,3‐bis(diphenylphosphino)propane) ions was analyzed by state‐of‐the‐art tandem MS, including gas‐phase ion/molecule reactions. The Mizoroki–Heck cross‐coupling reaction was performed in the gas phase, and the intrinsic reactivity of important intermediates could be examined. Moreover, linear free‐energy correlations were applied, and a mechanism for the scrambling reaction proceeding via phosphonium cations was assumed.  相似文献   
42.
Methane (CH \(_4\) ) adsorption has been widely studied, mainly in the context of natural gas purification. A much less prominent, but highly relevant application is the preconcentration of CH \(_4\) from ambient air. In this study, we compare six different commercial adsorbent materials with respect to their effectiveness for methane preconcentration: a macroporous polymeric resin (HayeSep D), multi-walled carbon nanotubes, two microporous metal-organic frameworks (HKUST-1 and ZIF-8), and two zeolites (5A and 13X). The most relevant properties, such as isosteric enthalpy of adsorption, specific surface area and the selectivity for CH \(_4\) adsorption over N \(_2\) were characterized by analyzing adsorption/desorption isotherms. Using these parameters, we discuss the tested adsorbents with respect to the most important properties and identify the most promising candidates. Furthermore we identify the experimental conditions that are expected to give the best results with respect to practical applications.  相似文献   
43.
DNA-encoded combinatorial synthesis provides efficient and dense coverage of chemical space around privileged molecular structures. The indole side chain of tryptophan plays a prominent role in key, or “hot spot”, regions of protein–protein interactions. A DNA-encoded combinatorial peptoid library was designed based on the Ugi four-component reaction by employing tryptophan-mimetic indole side chains to probe the surface of target proteins. Several peptoids were synthesized on a chemically stable hexathymidine adapter oligonucleotide “hexT”, encoded by DNA sequences, and substituted by azide-alkyne cycloaddition to yield a library of 8112 molecules. Selection experiments for the tumor-relevant proteins MDM2 and TEAD4 yielded MDM2 binders and a novel class of TEAD-YAP interaction inhibitors that perturbed the expression of a gene under the control of these Hippo pathway effectors.  相似文献   
44.
Single crystals of three new strontium nitridogermanates(IV) were grown in sealed niobium ampules from sodium flux. Dark red Sr4[GeN4] crystallizes in space group P21/c with a = 9.7923(2) Å, b = 6.3990(1) Å, c = 11.6924(3) Å and β = 115.966(1)°. Black Sr8Ge2[GeN4] contains Ge4– anions coexisting with [GeIVN4]8– tetrahedra and adopts space group Cc with a = 10.1117(4) Å, b = 17.1073(7) Å, c = 10.0473(4) Å and β = 115.966(1)°. Black Sr17Ge6N14 features the same anions alongside trigonal planar [GeIVN3]5– units. It crystallizes in P1 with a = 7.5392(1) Å, b = 9.7502(2) Å, c = 11.6761(2) Å, α = 103.308(1)°, β = 94.651(1)° and γ = 110.248(1)°.  相似文献   
45.
Electron-rich tertiary phosphines are valuable species in chemical synthesis. However, their broad application as ligands in catalysis and reagents in stoichiometric reactions is often limited by their costly synthesis. Herein, we report the synthesis and properties of a series of phosphines with 1-alkylpyridin-4-ylidenamino and 1-alkylpyridin-2-ylidenamino substituents that are accessible in a very short and scalable route starting from commercially available aminopyridines and chlorophosphines. The determination of the Tolman electronic parameter (TEP) value reveals that the electron donor ability can be tuned by the substituent pattern at the aminopyridine backbone and it can exceed that of common alkylphosphines and N-heterocyclic carbenes. The potential of the new phosphines as strong nucleophiles in phosphine-mediated transformations is demonstrated by the formation of Lewis base adducts with CO2 and CS2. In addition, the coordination chemistry of the new phosphines towards CuI, AuI, and PdII metal centers has been explored, and a convenient procedure to introduce the most basic phosphine into metal complexes starting from air-stable phosphonium salt is described.  相似文献   
46.
The substitution of scandium in fullerene single-molecule magnets (SMMs) DySc2N@C80 and Dy2ScN@C80 by lutetium has been studied to explore the influence of the diamagnetic metal on the SMM performance of dysprosium nitride clusterfullerenes. The use of lutetium led to an improved SMM performance of DyLu2N@C80, which shows a higher blocking temperature of magnetization (TB=9.5 K), longer relaxation times, and broader hysteresis than DySc2N@C80 (TB=6.9 K). At the same time, Dy2LuN@C80 was found to have a similar blocking temperature of magnetization to Dy2ScN@C80 (TB=8 K), but substantially different interactions between the magnetic moments of the dysprosium ions in the Dy2MN clusters. Surprisingly, although the intramolecular dipolar interactions in Dy2LuN@C80 and Dy2ScN@C80 are of similar strength, the exchange interactions in Dy2LuN@C80 are close to zero. Analysis of the low-frequency molecular and lattice vibrations showed strong mixing of the lattice modes and endohedral cluster librations in k-space. This mixing simplifies the spin–lattice relaxation by conserving the momentum during the spin flip and helping to distribute the moment and energy further into the lattice.  相似文献   
47.
Demonstrated here is a supramolecular approach to fabricate highly ordered monolayered hydrogen‐ and halogen‐bonded graphyne‐like two‐dimensional (2D) materials from triethynyltriazine derivatives on Au(111) and Ag(111). The 2D networks are stabilized by N???H?C(sp) bonds and N???Br?C(sp) bonds to the triazine core. The structural properties and the binding energies of the supramolecular graphynes have been investigated by scanning tunneling microscopy in combination with density‐functional theory calculations. It is revealed that the N???Br?C(sp) bonds lead to significantly stronger bonded networks compared to the hydrogen‐bonded networks. A systematic analysis of the binding energies of triethynyltriazine and triethynylbenzene derivatives further demonstrates that the X3‐synthon, which is commonly observed for bromobenzene derivatives, is weaker than the X6‐synthon for our bromotriethynyl derivatives.  相似文献   
48.
The Zintl anion (Ge2As2)2? represents an isostructural and isoelectronic binary counterpart of yellow arsenic, yet without being studied with the same intensity so far. Upon introducing [(PPh3)AuMe] into the 1,2‐diaminoethane (en) solution of (Ge2As2)2?, the heterometallic cluster anion [Au6(Ge3As)(Ge2As2)3]3? is obtained as its salt [K(crypt‐222)]3[Au6(Ge3As)(Ge2As2)3]?en?2 tol ( 1 ). The anion represents a rare example of a superpolyhedral Zintl cluster, and it comprises the largest number of Au atoms relative to main group (semi)metal atoms in such clusters. The overall supertetrahedral structure is based on a (non‐bonding) octahedron of six Au atoms that is face‐capped by four (GexAs4?x)x? (x=2, 3) units. The Au atoms bind to four main group atoms in a rectangular manner, and this way hold the four units together to form this unprecedented architecture. The presence of one (Ge3As)3? unit besides three (Ge2As2)2? units as a consequence of an exchange reaction in solution was verified by detailed quantum chemical (DFT) calculations, which ruled out all other compositions besides [Au6(Ge3As)(Ge2As2)3]3?. Reactions of the heavier homologues (Tt2Pn2)2? (Tt=Sn, Pb; Pn=Sb, Bi) did not yield clusters corresponding to that in 1 , but dimers of ternary nine‐vertex clusters, {[AuTt5Pn3]2}4? (in 2 – 4 ; Tt/Pn=Sn/Sb, Sn/Bi, Pb/Sb), since the underlying pseudo‐tetrahedral units comprising heavier atoms do not tend to undergo the said exchange reactions as readily as (Ge2As2)2?, according to the DFT calculations.  相似文献   
49.
Supramolecular capsules can be used to change the activity and selectivity of a catalyst through the influence of the second coordination sphere, reminiscent of how enzymes control the selectivity of their processes. In enzymes, this approach is used to also control the enantioselectivity of reactions in which the active catalytic site is often not chiral but the second coordination sphere is. We are interested in the possibility to generate a chiral second coordination sphere around an otherwise achiral transition metal complex for asymmetric catalysis. In this paper we show that the ligand template approach can be used to generate a chiral second coordination sphere around a rhodium complex, which is used in asymmetric hydroformylation.  相似文献   
50.
Silica aerogels are excellent thermal insulators, but their brittle nature has prevented widespread application. To overcome these mechanical limitations, silica–biopolymer hybrids are a promising alternative. A one‐pot process to monolithic, superinsulating pectin–silica hybrid aerogels is presented. Their structural and physical properties can be tuned by adjusting the gelation pH and pectin concentration. Hybrid aerogels made at pH 1.5 exhibit minimal dust release and vastly improved mechanical properties while remaining excellent thermal insulators. The change in the mechanical properties is directly linked to the observed “neck‐free” nanoscale network structure with thicker struts. Such a design is superior to “neck‐limited”, classical inorganic aerogels. This new class of materials opens up new perspectives for novel silica–biopolymer nanocomposite aerogels.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号