首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35篇
  免费   1篇
化学   36篇
  2021年   2篇
  2019年   1篇
  2015年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2005年   3篇
  2004年   1篇
  2003年   1篇
  2001年   3篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1994年   1篇
  1990年   1篇
  1989年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1983年   2篇
排序方式: 共有36条查询结果,搜索用时 500 毫秒
21.
The 31P NMR method shows that four forms of titanium(IV)-monosubstituted Keggin-type heteropolytungstate (Ti–HPA) exist in MeCN: the dimer (Bu4N)7[{PTiW11O39}2OH] (in the abbreviated form, (PW11Ti)2OH or H1), its conjugate base (PW11Ti)2O (1), and two monomers, PW11TiO (2) and PW11TiOH (H2). The ratio between the forms depends on the concentrations of H+and H2O. Dimer H1is produced from 2in MeCN when H+(1.5 mol) is added, and monomer H2is the key intermediate in this process. The catalytic activity of Ti–HPA in the oxidation of thioethers by H2O2correlates with their activity in peroxo complex formation and decreases in the order H2> H1> 2. The reaction of 2with H2O2in MeCN occurs slowly to form the inactive peroxo complex PW11TiO2(A). The addition of H2O2to H1and H2most likely results in the formation of the active hydroperoxo complex PW11TiOOH (B). Complexes Aand Btransform into each other when H+or OH(1 mol) is added per 1 mol of Aor B, respectively. The activity of Btoward thioethers in the stoichiometric reaction is proven by 31PNMR and optical spectroscopy.  相似文献   
22.
The formation of the structure of a highly organized silicate mesoporous mesophase material (MMM) with hexagonal packing via the S+Ireaction pathway and MMM-based aluminosilicates (Al,Si)-MMM and titanosilicates (Ti,Si)-MMM with different concentrations of the elements are considered. The structural, textural, and catalytic properties of the materials are studied.  相似文献   
23.
The catalytic properties of the sandwich polyoxometalate [Ti2(OH)2As2W19O67(H2O)]8−, which contains two (B-α-AsIIIW9O33) fragments linked together by a “belt” consisting of one octahedral WO(H2O)4+ and two square-pyramidal Ti(OH)3+ groups, have been investigated in the selective liquid-phase oxidation of organic compounds by aqueous hydrogen peroxide. The polyoxometalate shows high catalytic activity and selectivity in the oxidation of alkenes, alcohols, diols, and thioethers. The composition of the reaction products indicates that hydrogen peroxide is activated via a heterolytic mechanism.  相似文献   
24.
The catalytic performance of Zr-abtc and MIP-200 metal–organic frameworks consisting of 8-connected Zr6 clusters and tetratopic linkers was investigated in H2O2-based selective oxidations and compared with that of 12-coordinated UiO-66 and UiO-67. Zr-abtc demonstrated advantages in both substrate conversion and product selectivity for epoxidation of electron-deficient C=C bonds in α,β-unsaturated ketones. The significant predominance of 1,2-epoxide in carvone epoxidation, coupled with high sulfone selectivity in thioether oxidation, points to a nucleophilic oxidation mechanism over Zr-abtc. The superior catalytic performance in the epoxidation of unsaturated ketones correlates with a larger amount of weak basic sites in Zr-abtc. Electrophilic activation of H2O2 can also be realized, as evidenced by the high activity of Zr-abtc in epoxidation of the electron-rich C=C bond in caryophyllene. XRD and FTIR studies confirmed the retention of the Zr-abtc structure after the catalysis. The low activity of MIP-200 in H2O2-based oxidations is most likely related to its specific hydrophilicity, which disfavors adsorption of organic substrates and H2O2.  相似文献   
25.
We present investigation of the effect of electron-donor guests on framework mobility in the metal–organic framework (MOF) MIL-101(Cr) monitored by solid state 2H NMR spectroscopy. In a guest-free material, the mobile phenylene fragments of the terephthalate (TP) linkers populate two fractions with notably different kinetic parameters for torsional motion. Two fractions of rotational motion are indicative of non-equivalence of TP linker binding to the Cr3O trimer, the primary building unit of the MIL-101 framework. It is established that the interaction of the guest molecules with coordinatively unsaturated metal sites (CUS) of the MOF dramatically decreases torsional barriers for the linker motions, enhancing the rotation rate. This result is opposite to a more conventional slowing down effect on the linker rotation of the guests not selectively interacting with the adsorption sites inside the framework of the MOFs. The effect of coordination on both the torsional barrier and the rotation rate depends notably on the particular guest interacting with the CUS. The found effects of the guest on the rotational motion represent a basis for developing the strategy for ruling and controlling the linker rotation in MOFs with CUS. It is shown that if water occupies CUS, another guest (tert-butanol, cyclohexanone) fails to competitively coordinate to the site.  相似文献   
26.
The oxidation of thioethers by the green oxidant aqueous H2O2 catalysed by the tetratitanium‐substituted Polyoxometalate (POM) (Bu4N)8[{γ‐SiTi2W10O36(OH)2}2(μ‐O)2], as a model catalyst comprising tetrameric titanium centres, was investigated by kinetic modelling and DFT calculations. Several mechanisms of sulfoxidation were evaluated by using methyl phenyl sulfide (PhSMe) as a model substrate in the experiments and dimethyl sulfide in the calculations. The first mechanism assumes that the active hydroperoxo species forms directly through interaction of the Ti2(μ‐OH)2 group in [{γ‐SiTi2W10O36(OH)2}2(μ‐O)2]8? ( 1 D ) with H2O2. The second mechanism includes hydrolysis of Ti‐O‐Ti bonds linking two γ‐Keggin units in structure 1 D to produce the monomer [(γ‐SiW10Ti2O38H2)(OH)2]4? ( 1 M ), followed by the formation of an active hydroperoxo species upon interaction of the Ti hydroxo group with H2O2. Both kinetic modelling and DFT calculations support the mechanism through the monomeric species that involves the hydrolysis step. According to the DFT studies the activation of H2O2 by compound 1 M is preferred by 6.5 kcal mol?1 with respect to anion 1 D due to the more flexible Ti environment of the terminal Ti hydroxo group in 1 M . The calculations also indicate that for the ?monomeric“ mechanism two pathways are operative: the mono‐ and the multinuclear pathway. In the mononuclear mechanism, the active group is the terminal Ti?OH group, whereas in the multinuclear path the active group is the bridging Ti2(μ‐OH) moiety. Moreover, unlike previous studies, the sulfoxidation is preferred through a β‐oxygen atom transfer from the Ti hydroperoxo group because the α‐oxygen atom transfer leads to an unfavourable seven‐fold coordinated Ti environment in the transition state. Finally, we have generalised these results to other Ti‐containing POMs: the Ti‐monosubstituted α‐Keggin ion [α‐PTi(OH)W11O39]4? and the dititanium‐substituted sandwich‐type ion [Ti2(OH)2As2W19O67]8?.  相似文献   
27.
Kinetic and DFT studies revealed that protonation of Ti-containing polyoxometalates (Ti-POM) lowers significantly the energy barrier for the heterolytic oxygen transfer from the Ti hydroperoxo intermediate to the alkene, increasing the activity and selectivity of alkene oxidation.  相似文献   
28.
Iron tetrasulfophthalocyanine (FePcS) has been irreversibly inserted into nanocages of the metal organic framework MIL-101 to give a hybrid material FePcS/MIL-101 which demonstrated a superior catalytic performance in the selective oxidation of aromatic substrates with (t)BuOOH than homogeneous FePcS.  相似文献   
29.
The catalytic performances of Cr-MIL-101 and Fe-MIL-101 porous coordination polymers have been investigated in the allylic oxidation of alkenes, including natural terpenes, with molecular oxygen (1 atm) under mild solvent-free conditions. Both catalysts remain stable under optimal conditions (40°C for Fe-MIL-101 and 60°C for Cr-MIL-101) and can be recycled, at least, four times without loss of the catalytic properties. Fe-MIL-101 favours the formation of unsaturated alcohols, while Cr-MIL-101 mediates the formation of unsaturated ketones. The oxidation process involves the formation of alkene hydroperoxide via conventional radical chain process and its further transformations over the MIL-101 catalysts. The mechanism of the hydroperoxide transformation strongly depends on the metal nature.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号