首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   99篇
  免费   5篇
  国内免费   1篇
化学   79篇
力学   5篇
数学   12篇
物理学   9篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   4篇
  2012年   5篇
  2011年   10篇
  2010年   2篇
  2009年   7篇
  2008年   8篇
  2007年   9篇
  2006年   9篇
  2005年   3篇
  2004年   4篇
  2003年   2篇
  2002年   4篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1988年   1篇
  1986年   1篇
  1985年   3篇
  1984年   1篇
排序方式: 共有105条查询结果,搜索用时 46 毫秒
51.
Although commercial screen-printed electrodes (SPEs) are used extensively for biosensor purposes nowadays, detailed studies on characterization are still limited. In this study, the surface of the gold-based screen-printed electrode (SPGE) was carefully modified with self-assembly-monolayer through an optimized immobilization procedure. The key physical and chemical properties with regeneration capacity of the developed biosensors were assessed by various characterization techniques. Then SPGE was used to determine its sensitivity, limit of detection (LOD) and limit of quantification (LOQ) for a toxin substance of domoic acid in seafood that has become more common and rising concern of marine wildlife and seawater pollution. LOD in phosphate buffered saline (PBS) and cell culture media were obtained as 2.93 ng mL−1 and 4.28 ng mL−1, respectively. The reduced sensitivity for antibody-based biosensors in the cell culture medium was probably due to interaction of nonspecific compounds with DA in the culture medium compared to the much less complex environment of PBS. In addition, the regeneration capacity has been found very limited due to inherent heterogeneity and low robustness. This study can be used for the main challenges with the design requirements of commercial SPE-based biosensors to provide a detailed perspective for further toxicity studies.  相似文献   
52.
Low‐level laser (light) therapy has been used before exercise to increase muscle performance in both experimental animals and in humans. However, uncertainty exists concerning the optimum time to apply the light before exercise. The mechanism of action is thought to be stimulation of mitochondrial respiration in muscles, and to increase adenosine triphosphate (ATP) needed to perform exercise. The goal of this study was to investigate the time course of the increases in mitochondrial membrane potential (MMP) and ATP in myotubes formed from C2C12 mouse muscle cells and exposed to light‐emitting diode therapy (LEDT). LEDT employed a cluster of LEDs with 20 red (630 ± 10 nm, 25 mW) and 20 near‐infrared (850 ± 10 nm, 50 mW) delivering 28 mW cm2 for 90 s (2.5 J cm2) with analysis at 5 min, 3 h, 6 h and 24 h post‐LEDT. LEDT‐6 h had the highest MMP, followed by LEDT‐3 h, LEDT‐24 h, LEDT‐5 min and Control with significant differences. The same order (6 h > 3 h > 24 h > 5 min > Control) was found for ATP with significant differences. A good correlation was found (r = 0.89) between MMP and ATP. These data suggest an optimum time window of 3–6 h for LEDT stimulate muscle cells.  相似文献   
53.
Controlling the shape of metal–organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post‐synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein, we report using a simple wet‐chemistry process at room temperature to control the anisotropic etching of colloidal ZIF‐8 and ZIF‐67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, by an acid–base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal–ligand bonds; that, along these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution.  相似文献   
54.
Photo‐ and thermal‐polymerizations of 4‐diethoxyphosphoryl‐2,4,6‐tris(ethoxycarbonyl)‐1,6‐heptadiene, 4,4‐bis(diethoxyphosphoryl)‐2,6‐bis(t‐butoxycarbonyl)‐1,6‐heptadiene and 4‐diethoxyphosphoryl‐4‐ethoxycarbonyl‐2,6‐bis(t‐butoxycarbonyl)‐1,6‐heptadiene monomers and their phosphonic and carboxylic acid derivatives were investigated to understand the effect of the cyclic monomer structure on their polymerization reactivity. A strong effect of the substituents at positions 2, 4 and 6 of the monomers on polymerization rate was observed. The polymerizability of the monomers was successfully correlated with the 13C NMR chemical shifts of the vinyl carbons. Conversion values were consistent with the Tg being a measure of the flexibility of a monomer. The monomers containing phosphonic acid groups were soluble in water and ethanol. The acidic nature of the aqueous solutions of these monomers is expected to give them etching properties, important for dental applications. The interaction of the acid monomers with hydroxyapatite was investigated using 13C NMR technique.

  相似文献   

55.
The molecular geometry and vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) in the ground state has been calculated using the Hartree-Fock (HF) and density functional method (B3LYP) with 6-31G(d) basis set. The optimized geometric bond lengths and bond angles obtained by using HF and DFT (B3LYP) show the best agreement with the experimental data. Comparison of the observed fundamental vibrational frequencies of 1-(thiophen-2-yl-methyl)-2-(thiophen-2-yl)-1H-benzimidazole (C(16)H(12)N(2)S(2)) and calculated results by density functional B3LYP and Hartree-Fock methods indicate that B3LYP is superior to the scaled Hartree-Fock approach for molecular vibrational problems.  相似文献   
56.
Most bacteria, planktonic and sessile, are encapsulated inside loosely bound extracellular polymeric substance (EPS) in their physiological environment. Imaging a bacterium with its capsule requires lengthy sample preparation to enhance the capsular contrast. In this study, Salmonella typhimurium was investigated using atomic force microscopy for a practical means of imaging an encapsulated bacterium in air. The investigation further aimed to determine the relation between the buffers used for preparing the bacterium and the preservation of the capsular material surrounding it. It was observed that rinsing bacteria with HEPES buffer could stabilize and promote capsule formation, while rinsing with PBS, Tris, or glycine removes most of the capsular EPS. For bacteria rinsed with HEPES and air-dried, the height images showed only the contour of the capsular material, while the phase and amplitude images presented the detailed structures of the bacterial surface, including the flagella encapsulated inside the capsular EPS. The encapsulation was attributed to the cross-linking of the acidic exopolysaccharides mediated by the piperazine moiety of HEPES through electrostatic attraction. This explanation is supported by encapsulated bacteria observed for samples rinsed with N,N'-bis(2-hydroxyethyl)-piperazine solution and by the presence of entrapped HEPES within the dry capsular EPS suggested by micro-Raman spectroscopy.  相似文献   
57.
A contact problem for an infinitely long hollow cylinder is considered. The cylinder is compressed by an outer rigid ring with a circular profile. The material of the cylinder is linearly elastic and isotropic. The extent of the contact region and the pressure distribution are sought. Governing equations of the elasticity theory for the axisymmetric problem in cylindrical coordinates are solved by Fourier transforms and general expressions for the displacements are obtained. Using the boundary conditions, the formulation is reduced to a singular integral equation. This equation is solved by using the Gaussian quadrature. Then the pressure distribution on the contact region is determined. Numerical results for the contact pressure and the distance characterizing the contact area are given in graphical form. The English text was polished by Yunming Chen  相似文献   
58.
Two different groups of novel aminophosphonate‐containing methacrylates were synthesized. The route to the first group involves reactions of ethyl α‐bromomethacryate (EBBr) and t‐butyl α‐bromomethacryate (TBBr) with diethyl aminomethylphosphonate and diethyl 2‐aminoethylphosphonate. Bulk and solution polymerizations at 60–80 °C with 2,2′‐azobis(isobutyronitrile) (AIBN) gave crosslinked or soluble polymers depending on monomer structure and polymerization conditions. Increasing bulkiness from ethyl to t‐butyl decreases the polymerization rate, correlated well with the chemical shift differences of double bond carbons and consistent with the lower molecular weights of t‐butyl ester polymers (Mn = 1800–7900 vs. 50,000–72,000). The route to the second group involves the Michael addition reaction between diethyl aminomethylphosphonate and diethyl 2‐aminoethylphosphonate with 3‐(acryloyloxy)‐2‐hydroxypropyl methacrylate (AHM) to give secondary amines. The photopolymerization using differential scanning calorimeter showed that these monomers have similar or higher reactivities than AHM, even though AHM has two double bonds. The high rates of polymerization of these monomers were attributed to both hydrogen bonding interactions due to additional NH groups as well as chain transfer reactions. All the homopolymers obtained produced char (17–35%) on combustion. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   
59.
Stable sols of TiO2 were synthesized by a non-aqueous sol–gel process using titanium (IV) isopropoxide as precursor. The microstructure, optical and morphological properties of the films obtained by spin-coating from the sol, and annealed at different temperatures, were investigated using scanning electron microscopy, transmission electron microscopy, diffuse reflectance spectroscopy and ellipsometry. The crystalline structure of the films was characterized by X-ray diffraction and their photocatalytic activity was evaluated for the oxidation of ethanol in air. The influence of the calcination temperature, pre-heat treatment and the number of layers was studied. Simultaneous thermo-gravimetric and differential thermal analysis measurements were carried out to ascertain the thermal decomposition behavior of the precursors. In order to obtain a higher photoresponse in the visible region, a series of vanadium-, niobium- and tantalum-doped TiO2 catalysts was synthesized by the same sol–gel method. For V doping two different precursors, a vanadium alkoxide and V2O5, were used. The effect on the crystallization and photocatalytic activity of the doped TiO2 films was investigated. Furthermore, to identify the effective composition of the samples, they were characterized by X-ray photoelectron spectroscopy and the surface area of the powders was measured by N2 adsorption. The 10 wt.% doped catalysts exhibit high photocatalytic activity under visible light and among them the best performance was obtained for the sample containing Ta as dopant. The crystallite sizes are closely related to the photocatalytic activity.  相似文献   
60.
The photochemical and photophysical properties of new polymeric photoinitiators (PPIs) containing pendant thioxanthone (TX) and amine moieties are studied. The PPIs are synthesized by copolymerization of tert‐butyl 2‐((9‐oxo‐9H‐thioxanthen‐2‐yloxy)methyl)acrylate (TX1) with N,N‐dimethylaminoethyl methacrylate (DMAEM) at two different ratios using free radical polymerization. UV–vis spectra indicate that PPIs possess similar absorption characteristics to TX1 in the violet range (~400 nm; absorption red‐shift 20 nm). The photochemical mechanisms are studied by electron spin resonance (ESR), steady state photolysis, laser flash photolysis, and cyclic voltammetry. ESR studies indicate formation of two different aminoalkyl radicals on the hydrogen donor amine. The triplet state of the PPIs is short‐lived compared to isopropyl thioxanthone and TX1, due to the built‐in amine functionality. Photopolymerization of trimethylolpropane triacrylate (TMPTA) initiated by these photoinitiators under LED exposure at 385 and 405 nm using real‐time FTIR spectroscopy shows that they exhibit higher efficiency than TX/N‐methyldiethanolamine (MDEA) and TX1/MDEA systems with the advantage of a much higher molecular weight that can be very helpful to overcome migration issues. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 3370–3378  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号