首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   656篇
  免费   34篇
化学   492篇
晶体学   10篇
力学   29篇
数学   39篇
物理学   120篇
  2024年   2篇
  2023年   8篇
  2022年   72篇
  2021年   72篇
  2020年   29篇
  2019年   31篇
  2018年   27篇
  2017年   21篇
  2016年   40篇
  2015年   20篇
  2014年   31篇
  2013年   61篇
  2012年   45篇
  2011年   43篇
  2010年   25篇
  2009年   12篇
  2008年   24篇
  2007年   17篇
  2006年   7篇
  2005年   12篇
  2004年   12篇
  2003年   10篇
  2002年   4篇
  2001年   9篇
  2000年   8篇
  1999年   6篇
  1998年   5篇
  1997年   6篇
  1996年   5篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   5篇
  1991年   1篇
  1990年   3篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   2篇
  1980年   1篇
  1968年   1篇
  1917年   2篇
排序方式: 共有690条查询结果,搜索用时 0 毫秒
21.
Natural and accelerated weathering tests were performed to inspect the effect of antioxidants on low-density polyethylene (LDPE) films used as greenhouse covering materials. The LDPE pellets were extruded and blown into a film using a twin-screw extruder and film blowing machine, respectively. The film with 0.2 wt.% Alkanox-240 (AN-0.2) stabilizer showed the highest tensile strength (11 MPa) among all samples during 90 days of natural as well as accelerated weathering. The elastic modulus of the film with 0.5 wt.% of Good-rite (GR-0.5) increased after weathering from approximately 91.8 to 138.9 MPa, and showed the best performance. Morphological images of the neat LDPE film during weathering showed some cracks and grooves, while those of stabilized films showed fewer cracks. Moreover, the estimation of the rapidity of the accelerated method compared to the natural one was approximately nine times faster in Riyadh during the summer season (June–August). The present study suggests that the addition of antioxidants can improve the tensile strength, stability, and, hence, the effectiveness of these films. The best antioxidants were found to be 0.2 wt.% Alkanox and 0.5 wt.% Good-rite antioxidants.  相似文献   
22.
Abstract

5-fluorouracil (5-FU) refers to a fluorinated pyrimidine analogue that has been widely used as an anticancer agent for colon, head, and neck cancers. Detection of 5-FU and its metabolites; 5-fluorouridine and 5-fluoro-2-deoxyuridine in biological samples allows optimization of pharmacotherapy and encourages fundamental investigations of this medication. The development of accurate and reliable sample preparation, as well as analytical methods, is critical to isolate targeted analytes from complex matrices, apart from increasing detection sensitivity of analytes. With that, this paper presents a review of prior studies pertaining to chromatographic and electrophoretic methods that focused on the analysis of 5-FU and its metabolites in biological matrices such as plasma and urine. This paper concentrates on HPLC, GC and CE systems, which are the most commonly used strategies for analytical separation of 5-FU and its metabolites from samples. Detection of these antineoplastic agents at trace level demands highly sensitive and selective analytical methodologies. Application of these analytical techniques to biological matrices is reviewed with a focus on method development strategies, including types of mobile phases and background electrolytes employed in LC and CE systems.  相似文献   
23.
ABSTRACT

Eight Schiff bases have been synthesized by conventional and three different eco-friendly methods, whereby two aromatic carbonyl compounds viz. 2-thiophenecarboxaldehyde and salicylaldehyde were reacted with S-methyl, S-benzyl, and S-n-octyl-dithiocarbazates and thiosemicarbazide. In order to evaluate the efficiency of the synthesis methods, the time to complete the reaction and the yield of the Schiff base synthezised by eco-friendly methods, such as solvent-free grinding, water as a solvent, and lemon juice as catalyst, were compared with those synthesized by the conventional method. The chemical structures of all the synthesized Schiff bases, where two of them are novel and reported for the first time, were fully characterized by a variety of physico-chemical, analytical, and spectroscopic techniques. The molecular and crystal structures of the Schiff bases especially those having 2-thiophene moiety were further elucidated by single crystal X-ray diffraction analyzes.  相似文献   
24.
Anti-diabetic compounds from natural sources are now being preferred to prevent or treat diabetes due to adverse effects of synthetic drugs. The decoction of Muntingia calabura leaves was traditionally consumed for diabetes treatment. However, there has not been any published data currently available on the processing effects on this plant’s biological activity and phytochemical profile. Therefore, this study aims to evaluate the effect of three drying methods (freeze-drying (FD), air-drying (AD), and oven-drying (OD)) and ethanol:water ratios (0, 50, and 100%) on in vitro anti-diabetic activities of M. calabura leaves. In addition, an ultrahigh-performance-liquid chromatography–electrospray ionization tandem mass spectrometry (UHPLC-ESI-MS/MS) method was used to characterize the metabolites in the active extract. The FD M. calabura leaves, extracted with 50% ethanol, is the most active extract that exhibits a high α-glucosidase and α-amylase inhibitory activities with IC50 values of 0.46 ± 0.05 and 26.39 ± 3.93 µg/mL, respectively. Sixty-one compounds were tentatively identified by using UHPLC-ESI-MS/MS from the most active extract. Quantitative analysis, by using UHPLC, revealed that geniposide, daidzein, quercitrin, 6-hydroxyflavanone, kaempferol, and formononetin were predominant compounds identified from the active extract. The results have laid down preliminary steps toward developing M. calabura leaves extract as a potential source of bioactive compounds for diabetic treatment.  相似文献   
25.
Prasiola japonica possesses several biological activities. However, reports on the anti-inflammatory activities and molecular mechanisms of its different solvent fractions remain limited. In this study, we investigated the potential anti-inflammatory activities of P. japonica ethanol extract (Pj-EE) and four solvent fractions of Pj-EE made with hexane (Pj-EE-HF), chloroform (Pj-EE-CF), butanol (Pj-EE-BF), or water (Pj-EE-WF) in both in vitro (LPS-induced macrophage-like RAW264.7 cells) and in vivo (carrageenan-induced acute paw edema mouse models) experiments. The most active solvent fraction was selected for further analysis. Various in vitro and in vivo assessments, including nitric oxide (NO), cytokines, luciferase assays, real-time polymerase chain reactions, and immunoblotting analyses were performed to evaluate the underlying mechanisms. In addition, the phytochemical constituents were characterized by Liquid chromatography-tandem mass spectrometry. In in vitro studies, the highest inhibition of NO production was observed in Pj-EE-CF. Further examination revealed that Pj-EE-CF decreased the expression of inflammation-related cytokines in LPS-induced RAW264.7 cells and suppressed subsequent AP-1-luciferase activity by inhibition of phosphorylation events in the AP-1 signaling pathway. Pj-EE-CF treatment also demonstrated the strongest reduction in thickness and volume of carrageenan-induced paw edema, while Pj-EE-BF showed the lowest activity. Furthermore, Pj-EE-CF also reduced gene expression and cytokines production in tissue lysates of carrageenan-induced paw edema. These findings support and validate the evidence that Pj-EE, and especially Pj-EE-CF, could be a good natural source for an anti-inflammatory agent that targets the AP1 pathway.  相似文献   
26.
Neurotoxicity is a serious health problem of patients chronically exposed to arsenic. There is no specific treatment of this problem. Oxidative stress has been implicated in the pathological process of neurotoxicity. Polyphenolics have proven antioxidant activity, thereby offering protection against oxidative stress. In this study, we have isolated the polyphenolics from Acacia nilotica and investigated its effect against arsenic-induced neurotoxicity and oxidative stress in mice. Acacia nilotica polyphenolics prepared from column chromatography of the crude methanol extract using diaion resin contained a phenolic content of 452.185 ± 7.879 mg gallic acid equivalent/gm of sample and flavonoid content of 200.075 ± 0.755 mg catechin equivalent/gm of sample. The polyphenolics exhibited potent antioxidant activity with respect to free radical scavenging ability, total antioxidant activity and inhibition of lipid peroxidation. Administration of arsenic in mice showed a reduction of acetylcholinesterase activity in the brain which was counteracted by Acacia nilotica polyphenolics. Similarly, elevation of lipid peroxidation and depletion of glutathione in the brain of mice was effectively restored to normal level by Acacia nilotica polyphenolics. Gallic acid methyl ester, catechin and catechin-7-gallate were identified in the polyphenolics as the major active compounds. These results suggest that Acacia nilotica polyphenolics due to its strong antioxidant potential might be effective in the management of arsenic induced neurotoxicity.  相似文献   
27.
According to the latest report released by the World Health Organization, bacterial resistance to well-known and widely available antibacterial drugs has become a significant and severe global health concern and a grim challenge to tackle in order to cure infections associated with multidrug-resistant pathogenic microorganisms efficiently. Consequently, various strategies have been orchestrated to cure the severe complications related to multidrug-resistant bacteria effectively. Some approaches involved the retardation of biofilm formation and multidrug-resistance pumps in bacteria as well as the discovery of new antimicrobial agents demonstrating different mechanisms of action. In this regard, natural products namely alkaloids, terpenoids, steroids, anthraquinone, flavonoids, saponins, tannins, etc., have been suggested to tackle the multidrug-resistant bacterial strains owing to their versatile pharmacological effects. Amongst these, flavonoids, also known as polyphenolic compounds, have been widely evaluated for their antibacterial property due to their tendency to retard the growth of a wide range of pathogenic microorganisms, including multidrug-resistant bacteria. The hydroxylation of C5, C7, C3′, and C4′; and geranylation or prenylation at C6 have been extensively studied to increase bacterial inhibition of flavonoids. On the other hand, methoxylation at C3′ and C5 has been reported to decrease flavonoids’ antibacterial action. Hence, the latest information on the antibacterial activity of flavonoids is summarized in this review, with particular attention to the structure–activity relationship of this broad class of natural compounds to discover safe and potent antibacterial agents as natural products.  相似文献   
28.
In this study, we introduce newly defined Gamma operators which preserve constants and e2μ·, μ>0 functions. In accordance with this purpose, we focus on their approximation properties such as uniform convergence, rate of convergence, asymptotic formula, and saturation results. Superior properties of introduced operators have been tested both theoretically and numerically in certain senses to highlight the performance of the new constructions of Gamma operators.  相似文献   
29.
In this study, an ITO (indium tin oxide) based biosensor was constructed to detect SOX2. SOX2 helps the regulation of cell pluripotency and is closely related to early embryonic development, neural and sexual differentiation. SOX2 is amplified and overexpressed in some malignant tumors such as squamous cell, lung, prostate, breast, esophageal cell, colon, ovarian, glioblastoma, pancreatic cancer, gastric cancer, head and neck squamous cell carcinoma. To generate a hydroxylated clean electrode surface, ITO electrodes were treated with NH4OH/H2O2/H2O. Later, ITO‐PET electrode surfaces were modified with 3‐glycidoxypropyl trimethoxysilane (3‐GOPS). Then, Anti‐SOX2 was covalently immobilized onto the electrode surfaces. 3‐GOPS concentration, Anti‐SOX2 concentration and incubation time, SOX2 incubation time were optimized. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were utilized in order to follow up the immobilization processes and the optimization steps of the biosensor. To characterize the analytical properties of constructed immunosensor; linear range, repeatability, reproducibility and regeneration studies were investigated. The linear range of the immunosensor was detected as 0.625 pg/mL–62.5 pg/mL. Square wave voltammetry technique was also applied to the biosensor. Storage life of the biosensor was determined for identifying the possible usability of the biosensor in clinical field. Finally, the designed biosensor was applied to the real human serum samples. The results obtained with the presented biosensor were also compared with ELISA results.  相似文献   
30.
This article proposes a new fractional-order discrete-time chaotic system, without equilibria, included two quadratic nonlinearities terms. The dynamics of this system were experimentally investigated via bifurcation diagrams and largest Lyapunov exponent. Besides, some chaotic tests such as the 0–1 test and approximate entropy (ApEn) were included to detect the performance of our numerical results. Furthermore, a valid control method of stabilization is introduced to regulate the proposed system in such a way as to force all its states to adaptively tend toward the equilibrium point at zero. All theoretical findings in this work have been verified numerically using MATLAB software package.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号