全文获取类型
收费全文 | 1869篇 |
免费 | 87篇 |
国内免费 | 9篇 |
专业分类
化学 | 1452篇 |
晶体学 | 25篇 |
力学 | 44篇 |
数学 | 126篇 |
物理学 | 318篇 |
出版年
2024年 | 17篇 |
2023年 | 36篇 |
2022年 | 160篇 |
2021年 | 158篇 |
2020年 | 61篇 |
2019年 | 86篇 |
2018年 | 60篇 |
2017年 | 60篇 |
2016年 | 118篇 |
2015年 | 71篇 |
2014年 | 76篇 |
2013年 | 118篇 |
2012年 | 144篇 |
2011年 | 133篇 |
2010年 | 77篇 |
2009年 | 58篇 |
2008年 | 82篇 |
2007年 | 74篇 |
2006年 | 68篇 |
2005年 | 70篇 |
2004年 | 46篇 |
2003年 | 45篇 |
2002年 | 21篇 |
2001年 | 11篇 |
2000年 | 10篇 |
1999年 | 5篇 |
1998年 | 3篇 |
1997年 | 4篇 |
1996年 | 5篇 |
1995年 | 7篇 |
1994年 | 4篇 |
1993年 | 3篇 |
1992年 | 8篇 |
1991年 | 2篇 |
1990年 | 2篇 |
1989年 | 5篇 |
1988年 | 7篇 |
1987年 | 4篇 |
1985年 | 3篇 |
1984年 | 7篇 |
1983年 | 5篇 |
1982年 | 2篇 |
1981年 | 12篇 |
1980年 | 4篇 |
1979年 | 3篇 |
1978年 | 2篇 |
1965年 | 1篇 |
1935年 | 1篇 |
1934年 | 1篇 |
1917年 | 2篇 |
排序方式: 共有1965条查询结果,搜索用时 31 毫秒
81.
Harinash Rao Sulin Choo Sri Raja Rajeswari Mahalingam Diajeng Sekar Adisuri Priya Madhavan Abdah Md. Akim Pei Pei Chong 《Molecules (Basel, Switzerland)》2021,26(7)
Biofilms play an essential role in chronic and healthcare-associated infections and are more resistant to antimicrobials compared to their planktonic counterparts due to their (1) physiological state, (2) cell density, (3) quorum sensing abilities, (4) presence of extracellular matrix, (5) upregulation of drug efflux pumps, (6) point mutation and overexpression of resistance genes, and (7) presence of persister cells. The genes involved and their implications in antimicrobial resistance are well defined for bacterial biofilms but are understudied in fungal biofilms. Potential therapeutics for biofilm mitigation that have been reported include (1) antimicrobial photodynamic therapy, (2) antimicrobial lock therapy, (3) antimicrobial peptides, (4) electrical methods, and (5) antimicrobial coatings. These approaches exhibit promising characteristics for addressing the impending crisis of antimicrobial resistance (AMR). Recently, advances in the micro- and nanotechnology field have propelled the development of novel biomaterials and approaches to combat biofilms either independently, in combination or as antimicrobial delivery systems. In this review, we will summarize the general principles of clinically important microbial biofilm formation with a focus on fungal biofilms. We will delve into the details of some novel micro- and nanotechnology approaches that have been developed to combat biofilms and the possibility of utilizing them in a clinical setting. 相似文献
82.
Molecularly imprinted polymer (MIP) computational design is expected to become a routine technique prior to synthesis to produce polymers with high affinity and selectivity towards target molecules. Furthermore, using these simulations reduces the cost of optimizing polymerization composition. There are several computational methods used in MIP fabrication and each requires a comprehensive study in order to select a process with results that are most similar to properties exhibited by polymers synthesized through laboratory experiments. Until now, no review has linked computational strategies with experimental results, which are needed to determine the method that is most appropriate for use in designing MIP with high molecular recognition. This review will present an update of the computational approaches started from 2016 until now on quantum mechanics, molecular mechanics and molecular dynamics that have been widely used. It will also discuss the linear correlation between computational results and the polymer performance tests through laboratory experiments to examine to what extent these methods can be relied upon to obtain polymers with high molecular recognition. Based on the literature search, density functional theory (DFT) with various hybrid functions and basis sets is most often used as a theoretical method to provide a shorter MIP manufacturing process as well as good analytical performance as recognition material. 相似文献
83.
Dr. Teng Zhang Dr. Yuichi Kitagawa Ryoma Moriake Pedro Paulo Ferreira da Rosa Dr. Md. Jahidul Islam Dr. Tomoki Yoneda Prof. Yasuhide Inokuma Dr. Koji Fushimi Prof. Yasuchika Hasegawa 《Chemistry (Weinheim an der Bergstrasse, Germany)》2021,27(58):14438-14443
In this study, we have demonstrated a two-legged, upright molecular design method for monochromatic and bright red luminescent LnIII-silica nanomaterials. A novel EuIII-silica hybrid nanoparticle was developed by using a doubly binding TPPO−Si(OEt)3 (TPPO: triphenyl phosphine oxide) linker. The TPPO−Si(OEt)3 was confirmed by 1H, 31P, 29Si NMR spectroscopy and single-crystal X-ray analysis. Luminescent Eu(hfa)3 and Eu(tfc)3 moieties (hfa: hexafluoroacetylacetonate, tfc: 3-(trifluoromethylhydroxymethylene)camphorate) were fixed onto TPPO−Si(OEt)3-modified silica nanoparticles, producing Eu(hfa)3(TPPO−Si)2-SiO2 and Eu(tfc)3(TPPO−Si)2-SiO2, respectively. Eu(hfa)3(TPPO−Si)2−SiO2 exhibited the higher intrinsic luminescence quantum yield (93 %) and longer emission lifetime (0.98 ms), which is much larger than those of previously reported EuIII-based hybrid materials. Eu(tfc)3(TPPO−Si)2−SiO2 showed an extra-large intrinsic emission quantum yield (54 %), although the emission quantum yield for the precursor Eu(tfc)3(TPPO−Si(OEt)3)2 was found to be 39 %. These results confirmed that the TPPO−Si(OEt)3 linker is a promising candidate for development of EuIII-based luminescent materials. 相似文献
84.
Joy Md. Tuhinur R. Uddin Md. Miaz Bhoumik Nikhil C. Ghosh Shishir Kabir Shariff E. 《Transition Metal Chemistry》2021,46(2):149-157
Reactions of unsaturated [HOs3(CO)8{µ3-Ph2PCH(R)P(Ph)C6H4}] (R?=?H, Me) with Bu3SnH are examined. [HOs3(CO)8{µ3-Ph2PCH(R)P(Ph)C6H4}] reacts with Bu3SnH at room temperature to afford [H2Os3(CO)8(SnBu3){µ3-Ph2PCH(R)P(Ph)C6H4}] (1) via oxidative addition of the Sn?H bond to the parent cluster. Heating 1 in refluxing toluene leads to the formation of [H2Os3(CO)7(SnBu3){µ3-Ph2PCH(R)P(Ph)C6H4}] (2) through decarbonylation. Cluster 2 exists in two isomeric forms in solution which has been probed by VT NMR spectroscopy. The new Os-Sn bimetallic clusters have been characterized by a combination of analytical and spectroscopic data together with single-crystal X-ray diffraction analysis.
Graphic abstract 相似文献85.
Md Sharif Ullah Vladimir V. Zhivonitko Anatoliy Samoylenko Artem Zhyvolozhnyi Sirja Viitala Santeri Kankaanp Sanna Komulainen Leif Schrder Seppo J. Vainio Ville-Veikko Telkki 《Chemical science》2021,12(24):8311
Exosomes are a subset of secreted lipid envelope-encapsulated extracellular vesicles (EVs) of 50–150 nm diameter that can transfer cargo from donor to acceptor cells. In the current purification protocols of exosomes, many smaller and larger nanoparticles such as lipoproteins, exomers and microvesicles are typically co-isolated as well. Particle size distribution is one important characteristics of EV samples, as it reflects the cellular origin of EVs and the purity of the isolation. However, most of the physicochemical analytical methods today cannot illustrate the smallest exosomes and other small particles like the exomers. Here, we demonstrate that diffusion ordered spectroscopy (DOSY) nuclear magnetic resonance (NMR) method enables the determination of a very broad distribution of extracellular nanoparticles, ranging from 1 to 500 nm. The range covers sizes of all particles included in EV samples after isolation. The method is non-invasive, as it does not require any labelling or other chemical modification. We investigated EVs secreted from milk as well as embryonic kidney and renal carcinoma cells. Western blot analysis and immuno-electron microscopy confirmed expression of exosomal markers such as ALIX, TSG101, CD81, CD9, and CD63 in the EV samples. In addition to the larger particles observed by nanoparticle tracking analysis (NTA) in the range of 70–500 nm, the DOSY distributions include a significant number of smaller particles in the range of 10–70 nm, which are visible also in transmission electron microscopy images but invisible in NTA. Furthermore, we demonstrate that hyperpolarized chemical exchange saturation transfer (Hyper-CEST) with 129Xe NMR indicates also the existence of smaller and larger nanoparticles in the EV samples, providing also additional support for DOSY results. The method implies also that the Xe exchange is significantly faster in the EV pool than in the lipoprotein/exomer pool.Diffusion and xenon NMR based methods to determine a very broad range of sizes and sub-sets of extracellular vesicles. 相似文献
86.
Eka Sunarwidhi Prasedya Nur Ardiana Hasriaton Padmi Bq Tri Khairina Ilhami Ni Wayan Riyani Martyasari Anggit Listyacahyani Sunarwidhi Aluh Nikmatullah Sri Widyastuti Haji Sunarpi Andri Frediansyah 《Molecules (Basel, Switzerland)》2021,26(21)
The red macroalga Gelidium latifolium is widely distributed in the coastal areas of Indonesia. However, current knowledge on its potential biological activities is still limited. In this study, we investigated the potential bioactive compounds in Gelidium latifolium ethanol extract (GLE), and its cytotoxic effects against the murine B16-F10 melanoma cell line. GLE shows high total phenolic content (107.06 ± 17.42 mg GAE/g) and total flavonoid content (151.77 ± 3.45 mg QE/g), which potentially contribute to its potential antioxidant activity (DPPH = 650.42 ± 2.01 µg/mL; ABTS = 557.01 ± 1.94 µg/mL). ESI-HR-TOF-MS analysis revealed large absorption in the [M-H]- of 327.2339 m/z, corresponding to the monoisotopic molecular mass of brassicolene. The presence of this compound potentially contributes to GLE’s cytotoxic activity (IC50 = 84.29 ± 1.93 µg/mL). Furthermore, GLE significantly increased the number of apoptotic cells (66.83 ± 3.06%) compared to controls (18.83 ± 3.76%). Apoptosis was also confirmed by changes in the expression levels of apoptosis-related genes (i.e., p53, Bax, Bak, and Bcl2). Downregulated expression of Bcl2 indicates an intrinsic apoptotic pathway. Current results suggest that components of Gelidium latifolium should be further investigated as possible sources of novel antitumor drugs. 相似文献
87.
Hemalatha Murugaiah Chow Lun Teh Kai Chew Loh Ahmad Ramli Mohamad Yahya Nur Asshifa Md Noh Noor Hana Hanif Abu Bakar Daruliza Kernain Rokiah Hashim Yazmin Bustami 《Molecules (Basel, Switzerland)》2021,26(21)
Here, we report the extracellular biosynthesis of silver nanoparticles (AgNPs) and determination of their antibacterial and anticancer properties. We also explore the efficacy of bioAgNPs incorporated in cellulose nanocrystals (CNCs) and alginate (Alg) for the formation of an antibacterial hydrogel film. Streptomyces sp. PBD-311B was used for the biosynthesis of AgNPs. The synthesized bioAgNPs were characterized using UV-Vis spectroscopy, TEM, XRD, and FTIR analysis. Then, the bioAgNPs’ antibacterial and anticancer properties were determined using TEMA and cytotoxicity analysis. To form the antibacterial hydrogel film, bioAgNPs were mixed with a CNC and Alg solution and further characterized using FTIR analysis and a disc diffusion test. The average size of the synthesized bioAgNPs is around 69 ± 2 nm with a spherical shape. XRD analysis confirmed the formation of silver nanocrystals. FTIR analysis showed the presence of protein capping at the bioAgNP surface and could be attributed to the extracellular protein binding to bioAgNPs. The MIC value of bioAgNPs against P. aeruginosa USM-AR2 and MRSA was 6.25 mg/mL and 3.13 mg/mL, respectively. In addition, the bioAgNPs displayed cytotoxicity effects against cancer cells (DBTRG-0.5MG and MCF-7) and showed minimal effects against normal cells (SVG-p12 and MCF-10A), conferring selective toxicity. Interestingly, the bioAgNPs still exhibited inhibition activity when incorporated into CNC/Alg, which implies that the hydrogel film has antibacterial properties. It was also found that bioAgNP-CNC/Alg displayed a minimal or slow release of bioAgNPs owing to the intermolecular interaction and the hydrogel’s properties. Overall, bioAgNP-CNC/Alg is a promising antibacterial hydrogel film that showed inhibition against the pathogenic bacteria P. aeruginosa and MRSA and its application can be further evaluated for the inhibition of cancer cells. It showed benefits for surgical resection of a tumor to avoid post-operative wound infection and tumor recurrence at the surgical site. 相似文献
88.
89.
Md. Josim Uddin Daniela Russo Md. Anwarul Haque Serhat Sezai iek Frank D. Snnichsen Luigi Milella Christian Zidorn 《Molecules (Basel, Switzerland)》2021,26(14)
In this study, two previously undescribed diterpenoids, (5R,10S,16R)-11,16,19-trihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-3,8,11,13-abietatetraene-7-one (1) and (5R,10S,16R)-11,16-dihydroxy-12-O-β-d-glucopyranosyl-(1→2)-β-d-glucopyranosyl-17(15→16),18(4→3)-diabeo-4-carboxy-3,8,11,13-abietatetraene-7-one (2), and one known compound, the C13-nor-isoprenoid glycoside byzantionoside B (3), were isolated from the leaves of Clerodendrum infortunatum L. (Lamiaceae). Structures were established based on spectroscopic and spectrometric data and by comparison with literature data. The three terpenoids, along with five phenylpropanoids: 6′-O-caffeoyl-12-glucopyranosyloxyjasmonic acid (4), jionoside C (5), jionoside D (6), brachynoside (7), and incanoside C (8), previously isolated from the same source, were tested for their in vitro antidiabetic (α-amylase and α-glucosidase), anticancer (Hs578T and MDA-MB-231), and anticholinesterase activities. In an in vitro test against carbohydrate digestion enzymes, compound 6 showed the most potent effect against mammalian α-amylase (IC50 3.4 ± 0.2 μM) compared to the reference standard acarbose (IC50 5.9 ± 0.1 μM). As yeast α-glucosidase inhibitors, compounds 1, 2, 5, and 6 displayed moderate inhibitory activities, ranging from 24.6 to 96.0 μM, compared to acarbose (IC50 665 ± 42 μM). All of the tested compounds demonstrated negligible anticholinesterase effects. In an anticancer test, compounds 3 and 5 exhibited moderate antiproliferative properties with IC50 of 94.7 ± 1.3 and 85.3 ± 2.4 μM, respectively, against Hs578T cell, while the rest of the compounds did not show significant activity (IC50 > 100 μM). 相似文献
90.
Ageratum conyzoides L. and Its Secondary Metabolites in the Management of Different Fungal Pathogens
Rubal Chahal Arun Nanda Esra Küpeli Akkol Eduardo Sobarzo-Snchez Ashwani Arya Deepak Kaushik Rohit Dutt Rashmi Bhardwaj Md. Habibur Rahman Vineet Mittal 《Molecules (Basel, Switzerland)》2021,26(10)
Ageratum conyzoides L. (Family—Asteraceae) is an annual aromatic invasive herb, mainly distributed over the tropical and subtropical regions of the world. It owns a reputed history of indigenous remedial uses, including as a wound dressing, an antimicrobial, and mouthwash as well as in treatment of dysentery, diarrhea, skin diseases, etc. In this review, the core idea is to present the antifungal potential of the selected medicinal plant and its secondary metabolites against different fungal pathogens. Additionally, toxicological studies (safety profile) conducted on the amazing plant A. conyzoides L. are discussed for the possible clinical development of this medicinal herb. Articles available from 2000 to 2020 were reviewed in detail to exhibit recent appraisals of the antifungal properties of A. conyzoides. Efforts were aimed at delivering evidences for the medicinal application of A. conyzoides by using globally recognized scientific search engines and databases so that an efficient approach for filling the lacunae in the research and development of antifungal drugs can be adopted. After analyzing the literature, it can be reported that the selected medicinal plant effectively suppressed the growth of numerous fungal species, such as Aspergillus, Alternaria, Candida, Fusarium, Phytophthora, and Pythium, owing to the presence of various secondary metabolites, particularly chromenes, terpenoids, flavonoids and coumarins. The possible mechanism of action of different secondary metabolites of the plant against fungal pathogens is also discussed briefly. However, it was found that only a few studies have been performed to demonstrate the plant’s dosage and safety profile in humans. Considered all together, A. conyzoides extract and its constituents may act as a promising biosource for the development of effective antifungal formulations for clinical use. However, in order to establish safety and efficacy, additional scientific research is required to explore chronic toxicological effects of ageratum, to determine the probability of interactions when used with different herbs, and to identify safe dosage. The particulars presented here not only bridge this gap but also furnish future research strategies for the investigators in microbiology, ethno-pharmacology, and drug discovery. 相似文献