首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   610篇
  免费   16篇
化学   409篇
晶体学   19篇
力学   5篇
数学   32篇
物理学   161篇
  2023年   7篇
  2022年   21篇
  2021年   17篇
  2020年   20篇
  2019年   21篇
  2018年   16篇
  2017年   10篇
  2016年   20篇
  2015年   14篇
  2014年   26篇
  2013年   31篇
  2012年   37篇
  2011年   40篇
  2010年   29篇
  2009年   46篇
  2008年   44篇
  2007年   30篇
  2006年   23篇
  2005年   31篇
  2004年   15篇
  2003年   14篇
  2002年   26篇
  2001年   6篇
  2000年   8篇
  1999年   3篇
  1998年   1篇
  1997年   10篇
  1996年   4篇
  1995年   3篇
  1994年   3篇
  1993年   9篇
  1992年   7篇
  1990年   2篇
  1989年   2篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   5篇
  1983年   4篇
  1982年   8篇
  1981年   3篇
  1979年   1篇
  1976年   2篇
  1974年   1篇
排序方式: 共有626条查询结果,搜索用时 31 毫秒
611.
In this work we study the asymptotic behavior of the solutions of the linear Klein–Gordon equation in RNRN, N?1N?1. We prove that local energy of solutions to the Cauchy problem decays polynomially. Afterwards, we use the local decay of energy to study exact boundary controllability for the linear Klein–Gordon equation in general bounded domains of RNRN, N?1N?1.  相似文献   
612.
The effects of some composition variables on the development of multiple emulsions by one‐step method were evaluated and their morphology characterized. The formulations that remained stable during the period of the test were submitted to centrifugation and thermal stress tests. The stability and the morphology of multiple droplets were affected not only by the type and concentration of the surfactants employed, but also by the water/oil ratios used. The results suggest that the formation of multiple droplets could involve a combination of transitional and catastrophic phase inversions. The results provide improved knowledge about the one‐step emulsification method, a simplified process to prepare multiple emulsions when compared to the two‐steps method.  相似文献   
613.
Intense physical training is known to be associated with increased mineral losses through sweating (during the exercise) and also through urine (after the exercise). Nowadays physical training is recognized for adapting or damaging the muscles, depending on the intensity and duration of the effort, provoking detectable metabolic alterations in blood, mainly in the content of some ions. In this study Br, Ca, Cl, K, Mg, Na and S levels were investigated in blood of Brazilian athletes that were submitted to constant physical exercise, at Laboratório de Bioquímica do Exercício (LABEX/UNICAMP) using Neutron Activation Analyses technique (NAA). The blood samples were collected from male amateurs and elite athletes, ranging from 18 to 36 years old. The blood samples were irradiated in the nuclear reactor (IEA-R1, 3–4.5 MW, pool type) at IPEN/São Paulo-Brazil. The concentrations data were compared with the control group (subjects of same gender and age but not involved with physical activities). These data can be useful for evaluating the performance of endurance athletes during the period of competition preparation as well as to propose new evaluation of protocols not yet reported.  相似文献   
614.
Gold nanoparticles of different morphologies have been synthesized on a silica‐based organic‐inorganic hybrid material for catalytic applications. The gold nanoparticles formations proceed through in situ chemical reduction of the AuCl4? anions previously adsorbed on 3‐(1‐imidazolyl)propyl‐silsesquioxane, which plays the role of substrate and stabilizer. Two distinct reducing agents, sodium citrate and sodium borohydride, were employed to generate gold nanoparticles of different sizes. UV‐vis diffuse reflectance as well as transmission electron microscopy were employed to evaluate the particle’s morphology. Modified carbon paste electrodes were prepared from these materials and their electrochemical behavior investigated using potassium ferrocyanide and 4‐nitrophenol as redox model compounds. Both AuNPs‐modified electrodes decreased the overpotential of 4‐nitrophenol reduction by around 90 mV compared to the unmodified electrode as evidenced by cyclic voltammetry experiment. However, the smaller diameter particles (borohydride‐reduced) produced more significant catalytic effect as a consequence of their large surface area. Regarding the sensing parameters, the sensitivity is higher for the borohydride‐reduced AuNPs while the values of limit of detection are of the same order of magnitude. Thus, the detection limit and sensitivity are 70.0±0.6 nM and 187 µA/mM for the citrate‐reduced AuNPs; and 75.0±2.2 nM and 238 µA/mM for the borohydride‐reduced AuNPs.  相似文献   
615.
Nanocomposite Zn–Ag2S/TiO2 and Zn–TiO2 films were prepared by pulsed current electrolysis from acidic zinc sulphate solutions on a titanium substrate. The influence of the nanoparticles' nature on the structural and morphological characteristics of the metallic electrodeposit was also investigated. The electrodeposits were characterized by X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. Using transmission electron microscopy, it was possible to conclude that the chemical treatment applied to the commercial TiO2 particles promotes the formation of Ag2S/TiO2 composite nanoparticles, with Ti, Ag, S and O in its composition. This was also was confirmed by X-ray fluorescence spectrometry. These particles absorb visible light radiation which makes them promising materials for photoelectrocatalytic processes. Moreover, the modification in nanoparticle composition plays a remarkable influence on the coating morphology and Zn crystallite size. When TiO2 is added, a change of Zn texture was observed along with a decrease in crystallite size. In contrast, the metal matrix nanocomposites prepared with Ag2S/TiO2 exhibit a spongy Zn morphology with a lower average Zn crystallite size. The nanocomposite films were tested in the photoelectrodegradation of ibuprofen and the best results were obtained for Zn–Ag2S/ TiO2 photoelectrodes.  相似文献   
616.
One‐dimensional iron oxide materials fabricated on conducting glass substrates and their unique properties make these nanostructures promising candidates for a wide range of applications. Herein, vertically oriented α‐Fe2O3 nanorod arrays synthesized under hydrothermal conditions over a large area are described, as an active platform for surface‐enhanced resonance Raman scattering (SERRS) and surface‐enhanced fluorescence (SEF). From scanning electron microscopy images the formation of a homogeneous distribution of vertically oriented rods in a large area is confirmed. For activating the localized surface plasmon resonances, which are responsible for SERRS and SEF, a 6 nm layer of Ag is deposited onto the α‐Fe2O3 nanorod arrays by physical vapor deposition to form Ag islands.  相似文献   
617.
In this study, the experimental extraction conditions on applying headspace solid‐phase microextraction and cold fiber headspace solid‐phase microextraction (CF‐HS‐SPME) procedures to samples of six medicinal herbs commonly found in southern Brazil were optimized. The optimized conditions for headspace solid‐phase microextraction were found to be an extraction temperature of 60°C and extraction time of 40 min. For CF‐HS‐SPME, the corresponding values were 60°C and 15 min. In the case of the coating temperature for the CF‐HS‐SPME system, two approaches were investigated: (i) Temperature of 5°C applied during the whole extraction procedure; and (ii) the use of two fiber temperatures in the same extraction procedure with the aim of extracting the volatile and semivolatile compounds, the ideal condition being 60°C for the first 7.5 min and 5°C for the final 7.5 min. The three extraction procedures were compared. The CF‐HS‐SPME procedure had good performance only for the more volatile compounds whereas the strategy using two coating temperatures in the same procedure showed good performance for all compounds studied. It was also possible to determine the profile for the volatile fraction of each herb studied applying this technique followed by GC‐MS.  相似文献   
618.
This work focuses on the interaction of four representative NSAIDs (nimesulide, indomethacin, meloxicam, and piroxicam) with different membrane models (liposomes, monolayers, and supported lipid bilayers), at different pH values, that mimic the pH conditions of normal (pH 7.4) and inflamed cells (pH 5.0). All models are composed of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) which is a representative phospholipid of most cellular membranes. Several biophysical techniques were employed: Fluorescence steady-state anisotropy to study the effects of NSAIDs in membrane microviscosity and thus to assess the main phase transition of DPPC, surface pressure-area isotherms to evaluate the adsorption and penetration of NSAIDs into the membrane, IRRAS to acquire structural information of DPPC monolayers upon interaction with the drugs, and AFM to study the changes in surface topography of the lipid bilayers caused by the interaction with NSAIDs. The NSAIDs show pronounced interactions with the lipid membranes at both physiological and inflammatory conditions. Liposomes, monolayers, and supported lipid bilayers experiments allow the conclusion that the pH of the medium is an essential parameter when evaluating drug-membrane interactions, because it conditions the structure of the membrane and the ionization state of NSAIDs, thereby influencing the interactions between these drugs and the lipid membranes. The applied models and techniques provided detailed information about different aspects of the drug-membrane interaction offering valuable information to understand the effect of these drugs on their target membrane-associated enzymes and their side effects at the gastrointestinal level.  相似文献   
619.
A (SiPy+Cl?/CuTsPc)5 layer‐by‐layer film was employed for the electroanalytical determination of promethazine hydrochloride in BR buffer pH 5.0 with peaks at 0.48 and 0.79 V. After optimisation of the square‐wave parameters (f=100 s?1, a=40 mV and ΔEs=2 mV), the peak at 0.79 V was used for quantification and a detection limit of 8.71×10?9 mol L?1 and a quantification limit of 9.31×10?8 were calculated. The applicability of this procedure was tested on commercial formulations of promethazine hydrochloride by observing the stability, specificity, recovery and precision of the procedure in complex samples, without any preliminary treatment.  相似文献   
620.
Magnetic carbon-based nanomaterials have promising applications in many fields owing to their biocompatibility and thermal/mechanical stability. This study describes a high-temperature X-ray diffraction (XRD) study of the chemical and structural transformations suffered by superparamagnetic iron oxide nanoparticles embedded in porous carbons. The nanoparticles were prepared from the decomposition of iron pentacarbonyl over porous carbons, resulting in nanometer-sized iron oxides homogeneously dispersed into the carbon matrix. The thermally induced changes in these materials were followed by in situ high-temperature XRD, using synchrotron radiation. The growing of the nanoparticles and of the carbon crystallites were first observed, followed by the reduction of the iron oxides to form α-Fe (at temperatures as low as 400 °C in some cases) and γ-Fe(C). The temperatures at which these chemical reactions occurred were dependent on the total time spent on heating and on the nature of the iron oxides formed in the as prepared materials. A noticeably large thermal expansion coefficient was also observed for the iron oxide nanocrystals. The formation of austenitic iron, stabilized by the presence of carbon, was found to be only partially reversible upon cooling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号