首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   2篇
化学   10篇
数学   1篇
物理学   7篇
  2023年   1篇
  2022年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
排序方式: 共有18条查询结果,搜索用时 9 毫秒
11.
Journal of Solid State Electrochemistry - Cyclic voltammogram (CV) curves of Pt/graphene on different synthesis conditions of graphene oxide (GO) such as ratio of sulfuric to phosphoric acid and...  相似文献   
12.
In the present study, glasses from the three different compositional triangles in the BaO–B2O3–SiO2 system with fixed B2O3/SiO2 ratio and different BaO/SiO2 molar ratios (designated as Ba32, Ba37, and Ba42) were prepared, and suitability of them as sealant in solid oxide fuel cells were investigated. Structure of the glasses was characterized with Raman spectroscopy. According to the results, the structure of the glass with 32 % molar BaO (Ba32) predominantly consisted of Q2 structural species. In glasses with 37 and 42 % molar BaO (Ba37 and Ba42), with the substitution of SiO2 by BaO, distribution of Qn units widened, silicate glass network depolymerized, and concentration of Q1 structural units increased at the expense of Q2 units. X-ray diffraction analyses revealed that in samples Ba32 and Ba37, initially, Ba3Si5O13 and Ba5Si8O21 phases were crystallized, respectively, and it seemed they acted as the sites for the subsequent growth of BaSi2O5 phase. In contrast, the dominant phase in sample Ba42 was Ba2Si3O8. Sintering, wetting, and crystallization behavior of the glasses were studied using hot-stage microscopy and differential thermal analysis, respectively. Delay in the crystallization accompanied by depolymerization of the structure led into deformation at lower temperatures and greater wettability on the steel for Ba37 glass. All the glasses wetted AISI430 alloy at temperatures higher than 1,000 °C.  相似文献   
13.
14.
The present research aimed at investigating the electrocatalytic properties and the electrochemical deposition of Pt nanoparticles on carbon powder, carbon nanotube and preparation of carbon and single wall carbon nanotube supported platinum electrodes. The Pt nanoparticles were synthesized by electroreduction of hexachloroplatinic acid in aqueous solution at ?200 mV. Electrocatalytic properties of the modified electrodes for oxygen reduction were investigated by cyclic voltammetry in O2 saturated solution containing 0.1 M HClO4. Methanol electrooxidation at the modified surfaces in 0.5 M HCLO4 was studied by cyclic voltammetry. The corresponding results showed that the Pt/SWCNT/GC electrode exhibits more improved catalytical activity than the Pt/C/GC electrode.  相似文献   
15.
Small high-quality Au/n type-GaAs Schottky barrier diodes (SBDs) with low reverse leakage current are produced using lithography. Their effective barrier heights (BHs) and ideality factors from current-voltage (I-V) characteristics are measured by a Pico ampere meter and home-built I-V instrument. In spite of the identical preparation of the diodes there is a diode-to-diode variation in ideality factor and barrier height parameters. Measurement of topology of a surface of a thin metal film with atomic force microscope (AFM) shows that Au-n type-GaAS SD consists of a set of parallel-connected micro and nanocontacts diodes with sizes approximately in a range of 100-200 nm. Between barrier height and ideality factor there is an inversely proportional dependency. With the diameter of contact increasing from 5 μm up to 200 μm, the barrier height increases from 0.833 up to 0.933 eV and its ideality factor decreases from 1.11 down to 1.006. These dependencies show the reduction of the contribution of the peripheral current with the diameter of contact increasing. We find the effect of series resistance on barrier height and ideality factor.  相似文献   
16.
Uniform and single-crystalline Mn3O4 nano-spheres were synthesized by cathodic electrodeposition at high temperature (80 °C) and low current density (0.25 mA cm−1) on steel electrode. Further the annealed samples were characterized for their structural and morphological properties by means of X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM) and Brunauer-Emmett-Teller (BET) studies. TEM and SEM images showed that particles have spherical shapes and the average diameter size was about 50 nm. Formation of Mn3O4 compound was confirmed from FTIR studies. The XRD pattern showed that the Mn3O4 exhibit tetragonal hausmannite structure. The results of N2 adsorption-desorption analysis indicated that Mn3O4 nano-sphere has BET surface area of about 177.6 m2 g−1 and average pore diameters of 3 and 4 nm. The possible formation mechanism of Mn3O4 nanostructures has been discussed. The supercapacitive properties of Mn3O4 sample in 0.5 M Na2SO4 electrolyte showed maximum supercapacitance of 235.4 Fg−1 at scan rate 10 mV s−1. Coulumbic efficiency could be kept about 90% during 1000 cycles at 10 mV s−1.  相似文献   
17.
Nickel–salophen-modified glassy carbon electrodes prepared by transferring one drop of Ni–salophen complex solution on the electrode surface. This modified electrode has been used for the electrocatalytic oxidation of methanol in alkaline solutions with various methods such as cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The electrooxidation was observed as large anodic peaks, and early stages of the cathodic direction of potential sweep around 20 mV vs. Ag|AgCl|KClsat. A mechanism based on the electrochemical generation of Ni (Ш) active sites and their subsequent consumptions by methanol have been discussed. EIS studies were employed to unveil the charge transfer rate as well as the electrical characteristics of the catalytic surface. For the electrochemical oxidation of methanol at 5.0 M concentration, charge transfer resistance of nearly 0.936 kΩ was obtained, while the resistance of the electrocatalyst layer was about 111.6 Ω.  相似文献   
18.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号