全文获取类型
收费全文 | 76篇 |
免费 | 8篇 |
专业分类
化学 | 79篇 |
晶体学 | 3篇 |
物理学 | 2篇 |
出版年
2024年 | 1篇 |
2023年 | 1篇 |
2022年 | 3篇 |
2021年 | 2篇 |
2020年 | 2篇 |
2019年 | 1篇 |
2018年 | 3篇 |
2017年 | 1篇 |
2016年 | 1篇 |
2015年 | 2篇 |
2014年 | 5篇 |
2013年 | 7篇 |
2012年 | 9篇 |
2011年 | 6篇 |
2010年 | 1篇 |
2009年 | 5篇 |
2008年 | 7篇 |
2007年 | 7篇 |
2006年 | 5篇 |
2005年 | 4篇 |
2004年 | 1篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 2篇 |
1993年 | 1篇 |
1991年 | 1篇 |
1990年 | 2篇 |
1985年 | 1篇 |
排序方式: 共有84条查询结果,搜索用时 2 毫秒
81.
82.
Yuge T Tohnai N Fukuda T Hisaki I Miyata M 《Chemistry (Weinheim an der Bergstrasse, Germany)》2007,13(15):4163-4168
Hierarchical classification and single-crystal X-ray analysis of unique pseudo-cubic hydrogen-bond networks composed of primary ammonium carboxylates were carried out. The networks consist of four carboxylate anions and four primary ammonium cations at the corners of the cube, and twelve charge-assisted N--H...O hydrogen bonds on the sides of the cube. The configuration of the carboxylate anions generates topological diversity in the network. The results of this hierarchical classification showed that pseudo-cubic hydrogen-bond networks composed of primary ammonium carboxylates can form nine topologically different networks. These pseudo-cubic networks are a subset of the networks formed by octameric water in the form of an "ice cube". The classification system can be applied to other pseudo-cubic networks in a similar way. A survey of crystal structures based on combinations of triphenylacetic acid with various alkylamines (carbon numbers up to eight) and examination of the CSD (Cambridge Structural Database) showed eight salts that form such networks in their crystal structures. These structures are classified into six topologically different networks. Similar networks composed of other salts are also discussed from a topological point of view. 相似文献
83.
Dr. Ichiro Hisaki Eri Hiraishi Toshiyuki Sasaki Dr. Hideo Orita Dr. Seiji Tsuzuki Dr. Norimitsu Tohnai Prof. Dr. Mikiji Miyata 《化学:亚洲杂志》2012,7(11):2607-2614
Quinine, one of Cinchona alkaloids, has been of great interest from medical, synthetic, and supramolecular viewpoints. However, unaccountably, the guest‐free (GF) crystal of quinine containing no solvent or other molecules has not been reported for nearly three decades, although GF crystals of other Cinchona alkaloids, such as quinidine, cinchonidine, and cinchonine, are already known. In this study, we successfully revealed the crystal structure of quinine, which belongs to the P21 space group with the cell parameters of a=6.0587(1), b=19.2492(5), c=22.2824(7) Å, β=92.1646(11)°, and V=2596.83(12) Å3. Interestingly, the crystal has three crystallographically independent molecules in the cell (Z′=3) that are connected through a N(quinoline)???H? O hydrogen bond to form a pseudo three‐two‐fold (32) double‐helical motif. The helical motif is completely different from those observed in GF crystals of other Cinchona alkaloids. Hierarchical comparison on the crystal structures of a series of Cinchona alkaloids including quinine clearly demonstrated that only small structural differences of a molecule, particularly the position of the vinyl group, cause a significant variety of assembly manner in the crystalline state. There have been no reports systematically demonstrating such steric effect in crystals of Cinchona alkaloids, and, therefore, the present system contributes to the design of desired functional crystal structures. 相似文献
84.