首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   208篇
  免费   12篇
  国内免费   2篇
化学   163篇
晶体学   2篇
力学   6篇
综合类   1篇
数学   8篇
物理学   42篇
  2024年   1篇
  2023年   3篇
  2022年   20篇
  2021年   17篇
  2020年   11篇
  2019年   7篇
  2018年   10篇
  2017年   6篇
  2016年   13篇
  2015年   4篇
  2014年   17篇
  2013年   15篇
  2012年   14篇
  2011年   18篇
  2010年   10篇
  2009年   6篇
  2008年   5篇
  2007年   7篇
  2006年   5篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   3篇
  1985年   2篇
  1984年   1篇
  1974年   2篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
排序方式: 共有222条查询结果,搜索用时 15 毫秒
91.
This paper deals with thermodynamic chemical equilibrium analysis using the method of direct minimization of Gibbs free energy for all possible CH4 and CO2 reactions. The effects of CO2/CH4 feed ratio, reaction temperature, and system pressure on equilibrium composition, conversion, selectivity and yield were studied. In addition, carbon and no carbon formation regions were also considered at various reaction temperatures and CO2/CH4 feed ratios in the reaction system at equilibrium. It was found that the reaction temperature above 1100 K and CO2/CH4 ratio=1 were favourable for synthesis gas production with H2/CO ratio unity, while carbon dioxide oxidative coupling of methane (CO2 OCM) reaction to produce ethane and ethylene is less favourable thermodynamically. Numerical results indicated that the no carbon formation region was at temperatures above 1000 K and CO2/CH4 ratio larger than 1.  相似文献   
92.
93.
We have successfully developed a simple method for preparing silver nanoparticles (Ag NPs) using UV irradiation of AgNO3 in the interlamellar space of a montmorillonite (MMT) without any reducing agent or heat treatment. The properties of Ag/MMT nanocomposites were studied as a function of the UV irradiation period. UV irradiation disintegrated the Ag NPs into smaller size until a relatively stable size and size distribution were achieved. The results from UV–vis spectroscopy show that particles size of Ag NPs decrease with the increase of irradiation period. The crystalline structure of Ag NPs was determined by powder X-ray diffraction (PXRD).  相似文献   
94.
This report details correlated electrical, mechanical and magnetic behaviour in BiFeO(3) ceramics doped with 10% Ln (Ln = Sm, Nd) ions on the Bi, or perovskite A, site and synthesized by a sol-gel method. The ceramics exhibit bulk piezoelectric and ferroelectric properties and clear ferroelectric domain patterns through piezoresponse force microscopy. Resonant ultrasound spectroscopy, dielectric spectroscopy and magnetometry studies show correlated magnetoelectromechanical behaviour and the existence of weak ferromagnetism for both compositions. An anomaly with simultaneous mechanical and magnetic signatures is discovered in both materials near room temperature, while previously reported transitions and anomalies are found to exhibit electro- and/or magnetomechanical coupling. Magnetism is significantly enhanced in the Sm doped sample, which is a promising multiferroic material.  相似文献   
95.
An analytical study based on rigid frame model is demonstrated to evaluate the acoustic absorption of coir fiber. Effects of different conditions such as combination of air gap and perforated plate (PP) are studied in this work. Materials used here are treated as rigid rather than elastic, since the flow resistivity of coir fiber is very low. The well-known rigid frame Johnson-Allard equivalent-fluid model is applied to obtain the acoustic impedance of single layer coir fiber. Atalla and Sgard model is employed to estimate the surface impedance of PP. Acoustic transmission approach (ATA) is utilized for adding various consecutive layers in multilayer structure. Models are examined in different conditions such as single layer coir fiber, coir fiber backed with air gap, single layer PP in combination with coir fiber and air gap. Experiments are conducted in impedance tube on normal incidence sound absorption to validate the results. Results from the measurement are found to be in well agreement with the theoretical absorption coefficients. The performance of the rigid frame modeling method is checked more specifically in all conditions, by the mean prediction error rate of normal incidence sound absorption coefficients. Comparison between the measured absorption coefficients and predicted by rigid frame method shows discrepancy lower than 20 and 15% for most of the conditions in the frequency range of 0.2?C1.5 and 1.5?C5 kHz, respectively. Moreover, acoustic absorption of various single and multilayer structures is compared with the simpler empirical methods such as Delany-Bazley and Miki model; and complicated method such as Biot-Allard Model and Allard Transfer Function (TF) method. Comparisons show that the presented method offers a better accuracy of the results than the empirical models. Subsequently, it can provide almost same absorption plot with Biot-Allard model (single layer combination) and TF method (multilayer combination) proving it to be a comprehensively easy and general analytical tool. Therefore, the rigid frame model can be implemented relatively easier than other similar models to analyze the acoustic absorption of coir fiber in most of the conditions.  相似文献   
96.
Different biological methods are gaining recognition for the production of silver nanoparticles (Ag-NPs) due to their multiple applications. The use of plants in the green synthesis of nanoparticles emerges as a cost effective and eco-friendly approach. In this study the green biosynthesis of silver nanoparticles using Callicarpa maingayi stem bark extract has been reported. Characterizations of nanoparticles were done using different methods, which include; ultraviolet-visible spectroscopy (UV-Vis), powder X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray fluorescence (EDXF) spectrometry, zeta potential measurements and Fourier transform infrared (FT-IR) spectroscopy. UV-visible spectrum of the aqueous medium containing silver nanoparticles showed absorption peak at around 456 nm. The TEM study showed that mean diameter and standard deviation for the formation of silver nanoparticles were 12.40 ± 3.27 nm. The XRD study showed that the particles are crystalline in nature, with a face centered cubic (fcc) structure. The most needed outcome of this work will be the development of value added products from Callicarpa maingayi for biomedical and nanotechnology based industries.  相似文献   
97.
In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex?), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.  相似文献   
98.
Electrochemical DNA biosensor was successfully developed by depositing the ionic liquid (e.g., 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([EMIM][Otf])), ZnO nanoparticles, and chitosan (CHIT) nanocomposite membrane on a modified gold electrode (AuE). The electrochemical properties of the [EMIM][Otf]/ZnO/CHIT/AuE for detection of DNA hybridization were studied. Under optimal conditions using cyclic voltammetry, the target DNA sequences could be detected in the concentration range of 1.0 × 10−18 to 1.82 × 10−4 mol L−1, and with the detection limit of 1.0 × 10−19 mol L−1. This DNA biosensor detection approaches provide a quick, sensitive, and convenient method to be used in the identification of Trichoderma harzianum.  相似文献   
99.
The transport properties of the gamma-irradiated CrO2-polymer composites were investigated. The resistance R is strongly current I dependent, except at high temperature where it displays a semiconductor-like temperature dependence for all currents. At low currents, I≤10 μA, as the temperature decreases far below the ferromagnetic transition, the resistance decreases first, then reaches a minimum, and at last increases again toward a second peak. At even lower temperatures, the second peak is followed by a metallic-like temperature dependence of R that ends at a cusp point marking the metal–insulator transition. The increase of the current shifts the cusp toward lower temperatures and the first minima toward higher temperatures. The resistance increases with the increase in current for all currents in the range 0.2≤I≤10 μA. For I≥50 μA, the resistance increases monotonically with the decrease in temperature in the whole temperature range but obeys different laws at low and high temperatures. An explanation attempt in terms of spin transport, disorder, and thermal effects is proposed.  相似文献   
100.
The dislocation structure of the deforming Zr+1% Nb alloy in the stage of parabolic work hardening was examined by the technique of transmission electron microscopy (TEM). The faulted structure of the material is found to vary both qualitatively and quantitatively in the regions corresponding with the zones of local strain maxima and minima. The data on the density of different types of defect in the above zones have been analyzed. Received: 19 December 2000 / Accepted: 20 December 2000 / Published online: 23 March 2001  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号