首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1844篇
  免费   31篇
  国内免费   8篇
化学   1358篇
晶体学   17篇
力学   27篇
数学   126篇
物理学   355篇
  2023年   9篇
  2021年   11篇
  2020年   12篇
  2019年   16篇
  2018年   17篇
  2017年   8篇
  2016年   21篇
  2015年   16篇
  2014年   28篇
  2013年   58篇
  2012年   66篇
  2011年   77篇
  2010年   42篇
  2009年   54篇
  2008年   124篇
  2007年   90篇
  2006年   104篇
  2005年   93篇
  2004年   92篇
  2003年   87篇
  2002年   65篇
  2001年   47篇
  2000年   47篇
  1999年   23篇
  1998年   18篇
  1997年   22篇
  1996年   22篇
  1995年   22篇
  1994年   30篇
  1993年   23篇
  1992年   44篇
  1991年   25篇
  1990年   29篇
  1989年   14篇
  1988年   18篇
  1987年   24篇
  1986年   31篇
  1985年   36篇
  1984年   47篇
  1983年   20篇
  1982年   37篇
  1981年   33篇
  1980年   23篇
  1979年   32篇
  1978年   21篇
  1977年   17篇
  1976年   15篇
  1975年   14篇
  1973年   10篇
  1968年   8篇
排序方式: 共有1883条查询结果,搜索用时 15 毫秒
81.
The crystal structures of the series of four ternary complexes, [Pd(phen)(2,6-PDCA)].4H(2)O (1) (phen=1,10-phenanthroline; 2,6-PDCA=2,6-pyridinedicarboxylic acid), [Pd(bpy)(2,3-PDCA)].3H(2)O (2) (bpy=2,2'-bipyridineand; 2,3-PDCA=2,3-pyridinedicarboxylic acid) and [Pd(phen)(PHT)].2.5H(2)O (3) (PHT=o-phthalic acid ) and [Pd(bpy)(PHT)].1.5H(2)O (4), are determined and the coordination modes of palladium(II) ternary complexes are characterized. All complexes take the mononuclear Pd(II) complexes, in which central Pd(II) atom of each complex has a similar distorted square-planar four coordination geometry. In all complexes, the aromatic heterocyclic compounds, phen and bpy, behave as a bidentate N, N' ligand. In the complex 1 and 2, 2,6-PDCA and 2,3-PDCA behave as a bidentate N, O ligand, and in complex 3 and 4, PHT behaves as a bidentate O, O' ligand.  相似文献   
82.
The potential energy surface of benzene (C(6)H(6)) with a He*(2(3)S) atom was obtained by comparison of experimental data in collision-energy-resolved two-dimensional Penning ionization electron spectroscopy with classical trajectory calculations. The ab initio model interaction potentials for C(6)H(6)+He*(2(3)S) were successfully optimized by the overlap expansion method; the model potentials were effectively modified by correction terms proportional to the overlap integrals between orbitals of the interacting system, C(6)H(6) and He*(2(3)S). Classical trajectory calculations with optimized potentials gave excellent agreement with the observed collision-energy dependence of partial ionization cross sections. Important contributions to corrections were found to be due to interactions between unoccupied molecular orbitals and the He*2s orbital. A C(6)H(6) molecule attracts a He*(2(3)S) atom widely at the region where pi electrons distribute, and the interaction of -80 meV (ca. -1.8 kcal/mol) just cover the carbon hexagon. The binding energy of a C(6)H(6) molecule and a He* atom was 107 meV at a distance of 2.40 A on the sixfold axis from the center of a C(6)H(6) molecule, which is similar to that of C(6)H(6)+Li and is much larger than those of the C(6)H(6)+[He,Ne,Ar] systems.  相似文献   
83.
We study the QCD phase structure at high temperature and density adopting a histogram method. Because the quark determinant is complex at finite density, the Monte-Carlo method cannot be applied directly. We use a reweighting method and try to solve the problems which arise in the reweighting method, i.e. the sign problem and the overlap problem. We discuss the chemical potential dependence of the probability distribution function in the heavy quark mass region and examine the applicability of the approach in the light quark region.  相似文献   
84.
Abstract

Although cyanide compounds are not incorporated in photographic processing solutions, false detection of cyanide ion is often encountered during the determination of total cyanide by various standardized methods such as ISO, ANSI and JIS. Various organic compounds and nitrogen compounds in the processing solutions were examined because of this false detection. The results suggest that hydrogen cyanide is formed by a reaction between these compounds during the distillation process for the separation of total cyanide, even though ISO, ANSI and JIS were used. The results support the following three mechanisms of cyanide formation involved in the process: (1) Hydroxylammonium salts reacts with another ingredient, formaldehyde, to form formaldoxime, which then decomposes to HCN. (2) Hydroxylammonium is oxidized by air to form nitrite ion, which subsequently reacts with organic compounds such as aminocarboxylic acids and aromatic amines (the colour-developing agent) to form HCN. (3) Potassium permanganate oxidizes aromatic amines to form HCN.  相似文献   
85.
The title compound was obtained from 1,3-dichloro-adamantane and some silylating reagents with Na-HMPA.  相似文献   
86.
The time‐dependent characteristics of firefly bioluminescence initiated by manual injection of adenosine triphosphate (ATP) into buffer solution containing luciferin (Ln), luciferase (Luc) and Mg2+ were measured with a resolution of 10 ms, and compared with those obtained by photolysis of caged ATP. The time course depends on pH; both rise and decay rates decrease when pH is lowered from 7.8 to 6.8. In contrast, the parameter λ in the kinetic formula related to diffusion of ATP is almost independent of pH. The pH dependence of the time course of bioluminescence can be explained by the same pH tendency as the rate of ATP binding at the active site of Luc. The time‐resolved spectra can be decomposed into two Gaussian components with maxima at 2.2 and 2.0 eV. At pH 7.8, the band at 2.2 eV is more intense than that at 2.0 eV for all three concentration conditions. At lower pH, the band at 2.2 eV becomes weaker than that at 2.0 eV. The intensity ratio of the 2.0 and 2.2 eV bands is constant for duration time of 600 s for both injection and photolysis experiments, and the above conclusions are unaffected by the concentration ratio [Ln]/[Luc].  相似文献   
87.
Effectiveness of Pd/Mg chemical modifier for the accurate direct determination of zinc in marine/lacustrine sediments by graphite furnace atomic absorption spectrometry (GF-AAS) using slurry samples was evaluated. A calibration curve prepared by aqueous zinc standard solution with addition of Pd/Mg chemical modifier is used to determine the zinc concentration in the sediment. The accuracy of the proposed method was confirmed using Certified Reference Materials, NMIJ CRM 7303-a (lacustrine sediment) from National Metrology Institute of Japan, National Institute of Advanced Industrial Science and Technology, Japan, and MESS-3 (marine sediment) and PACS-2 (marine sediment) from National Research Council, Canada. The analytical results obtained by employing Pd/Mg modifier are in good agreement with the certified values of all the reference sediment materials. Although for NRC MESS-3 an accurate determination of zinc is achieved even without the chemical modifier, the use of Pd/Mg chemical modifier is recommended as it leads to establishment of a reliable and accurate direct analytical method. One quantitative analysis takes less than 15 minutes after we obtain dried sediment samples, which is several tens of times faster than conventional analytical methods using acid digested sample solutions. The detection limits are 0.13?µg?g?1 (213.9?nm) and 16?µg?g?1 (307.6?nm), respectively, in sediment samples, when 40?mg of dried powdered samples are suspended in 20?mL of 0.1?mol?L?1 nitric acid and a 10?µl portion of the slurry sample is measured. The precision of the proposed method is 8–15% (RSD).  相似文献   
88.
Mid‐sized molecules have emerged as an attractive chemical space and potentially provide a robust basis for the development of synthetic agents to control intracellular protein interactions. However, the limited cell permeability and chemical tractability of such agents remain to be addressed. We envisioned that target‐templated synthesis of such mid‐sized molecules might provide a solution. Here, we exploited a copper‐free Huisgen cycloaddition for template synthesis using a peptide fragment containing a 4,8‐diazacyclononyne (DACN) moiety and an azide‐containing fusicoccin derivative in the presence or absence of recombinant 14‐3‐3ζ protein in vitro. Time‐course changes in the yield of products demonstrated that the reaction was accelerated in the presence of 14‐3‐3 and one of the regioisomers was generated predominantly, supporting the template effect.  相似文献   
89.
Highly isotactic (it-) and highly syndiotactic (st-) poly(methyl methacrylate)s (PMMAs) uniform with respect to molecular weight (stereoregular, uniform PMMAs) were isolated up to the 100mer from it- and st-PMMAs by supercritical fluid chromatography (SFC) and characterized by NMR and mass spectroscopies. Glass transition temperatures (Tg's) of the uniform it- and st-PMMAs were higher than those of the corresponding PMMAs with MWD and with similar molecular weight on average. The Tg values of the uniform it-and st-PMMAs series obeyed the relationship, Tg = Tg∞ - K/M, where M and Tg∞ denote molecular weight and Tg at infinite M, respectively. The reciprocal melting points (1/Tm) of uniform it-PMMA (degree of polymerization, DP = 28–44), obtained from methanol solutions by evaporating the solvent, increased linearly with increasing 1/DP. Extrapolation of the linear relation to 1/DP = 0 gave the Tm of it-PMMA with infinite DP; Tm∞ = 171.1°C. Thermal degradation behavior was studied by thermogravimetry and by SFC analysis of degradation products. In gel-permeation chromatography (GPC) measurements, the it-50mer eluted faster than the st-50mer. Calibration curves for it- and st-PMMAs could be obtained using series of the uniform PMMAs. The instrumental spreading factor determined using it-25mer, it-50mer, st-25mer and st-50mer for our GPC chromatograph was 0.070 ml when the volume of the sample solution was 0.003ml. GPC analysis of a mixture of the it- and st-50mers in tetrahydrofuran indicated formation of a stereocomplex in the solution, and was found quite useful to elucidate the minimum sequence length required for complex formation.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号