首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   0篇
化学   78篇
晶体学   1篇
力学   2篇
综合类   3篇
数学   3篇
物理学   4篇
  2022年   3篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2017年   4篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   6篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   4篇
  2008年   4篇
  2007年   5篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  2003年   3篇
  2002年   2篇
  2001年   6篇
  2000年   2篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   3篇
  1995年   3篇
  1993年   1篇
  1991年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有91条查询结果,搜索用时 27 毫秒
81.
Pseudo‐first‐order rate constants (kobs) for hydrolysis of a sulfonylurea herbicide, azimsulfuron, AZIM®, {N‐[[(4,6‐dimethoxy‐2‐pyrimidinyl)amino]carbony]‐1‐methyl‐4‐(2‐methyl‐2H‐tetrazol‐5‐yl)‐1H‐pyrazole‐5‐sulfonamide} (AZS) follow an empirical relationship: kobs1 + α2[OH] + α3[OH]2 within the [NaOH] range of 0.1–2.0 M at different temperatures ranging from 40 to 55°C. The contribution of α3[OH]2 term is small compared with α2[OH] term and this turns out to be zero at 60°C. Pseudo‐first‐order rate constants (kobs) for hydrolysis of AZS within the [H+] range from 2.5 × 10−6 to 1.4 M follow the relationship: kobs = (α1K a + B1[H+] + B2[H+]2)/([H+] + Ka) where pKa = 4.37 at 50°C. The value of B1 is nearly 25 times larger than that of α1. The rate of alkaline hydrolysis of AZIM is weakly sensitive to ionic strength. © 1999 John Wiley & Sons, Inc., Int J Chem Kinet 31: 253–260, 1999  相似文献   
82.
In this report, the preparation of solid polymer electrolytes (SPEs) is performed from polyvinyl alcohol, methyl cellulose (PVA-MC), and ammonium chloride (NH4Cl) using solution casting methodology for its use in electrical double layer capacitors (EDLCs). The characterizations of the prepared electrolyte are conducted using a variety of techniques, including Fourier transform infrared spectroscopy (FTIR), electrical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The interaction between the polymers and NH4Cl salt are assured via FTIR. EIS confirms the possibility of obtaining a reasonably high conductance of the electrolyte of 1.99 × 10−3 S/cm at room temperature. The dielectric response technique is applied to determine the extent of the ion dissociation of the NH4Cl in the PVA-MC-NH4Cl systems. The appearance of a peak in the imaginary part of the modulus study recognizes the contribution of chain dynamics and ion mobility. Transference number measurement (TNM) is specified and is found to be (tion) = 0.933 for the uppermost conducting sample. This verifies that ions are the predominant charge carriers. From the LSV study, 1.4 V are recorded for the relatively high-conducting sample. The CV curve response is far from the rectangular shape. The maximum specific capacitance of 20.6 F/g is recorded at 10 mV/s.  相似文献   
83.
Nucleophilic second-order rate constant (Kn ms) for the reaction of DL-proline with ionized phenyl salicylate (PS) shows a nonlinear decrease with the increase in the content of CH3CN in mixed aqueous solvents at ≤50% v/v CH3CN. The values of kn ms show a mild increase with the increase in the content of CH3CN at >50% v/v CH3CN. The effect of solvent on kn ms is explained in terms of solvent effect on the pKa of the conjugate acids of leaving group (i.e. phenolate ion) and DL-proline.  相似文献   
84.
利用电磁场四维双势法,首先给出了广义Maxwen和d'Alembert方程的解,并进-步给出了场强与四维双势的关系.然后利用有电荷存在时的d'Alembert方程推迟解.求出了带磁荷粒子和双荷粒子(Dyon粒子)的电磁辐射的表达式,并分别给出了电荷和磁荷所激发的电四极和磁四极辐射四维双矢势表达式.最后得到了双荷粒子电四极和磁四极辐射场表达式并对其物理性质进行了讨论.  相似文献   
85.
Pseudo‐first‐order rate constants (kobs) for alkaline hydrolysis of 4‐nitrophthalimide (NPTH) decreased by nearly 8‐ and 6‐fold with the increase in the total concentration of cetyltrimethyl‐ammonium bromide ([CTABr]T) from 0 to 0.02 M at 0.01 and 0.05 M NaOH, respectively. These observations are explained in terms of the pseudophase model and pseudophase ion‐exchange model of micelle. The increase in the contents of CH3CN from 1 to 70% v/v and CH3OH from 0 to 80% v/v in mixed aqueous solvents decreases kobs by nearly 12‐ and 11‐fold, respectively. The values of kobs increase by nearly 27% with the increase in the ionic strength from 0.03 to 3.0 M. The mechanism of alkaline hydrolysis of NPTH involves the reactions between HO? and nonionized NPTH as well as between HO? and ionized NPTH. The micellar inhibition of the rate of alkaline hydrolysis of NPTH is attributed to medium polarity effect. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 407–414, 2001  相似文献   
86.
The use of low-cost and ecofriendly adsorbents has been investigated as an ideal alternative to the current expensive methods of removing dyes from wastewater. Orange peel was collected from the fields of orange trees in the north of Iran and converted into a low-cost adsorbent. This paper deals with the removal of textile dyes from aqueous solutions by orange peel. Direct Red 23 (DR23) and Direct Red 80 (DR80) were used as model compounds. The adsorption capacity Q0 was 10.72 and 21.05 mg/g at initial pH 2. The effects of initial dye concentration (50, 75, 100, 125 mg/l), pH, mixing rate, contact time, and quantity of orange peel have been studied at 25 degrees C. The Langmuir and Freundlich models were used for this study. It was found that the experimental results show that the Langmuir equation fit better than the Freundlich equation. The results indicate that acidic pH supported the adsorption of both dyes on the adsorbent. Orange peel with concentrations of 8 and 4 g/l has shown adsorption efficiencies of about 92 and 91% for DR23 and DR80, respectively. Furthermore, adsorption kinetics of both dyes was studied and the rates of sorption were found to conform to pseudo-second-order kinetics with a good correlation (R > or = 0.998). Maximum desorption of 97.7% for DR23 and 93% for DR80 were achieved in aqueous solution at pH 2. Finally, the effect of adsorbent surface was analyzed by scanning electron microscope (SEM). SEM images showed reasonable agreement with adsorption measurements.  相似文献   
87.
The magnitude of hydroxide ion-catalyzed second-order rate constant (kOH) for hydrolysis of N-methoxyphthalimide (NMPT) supports the conclusion that the rate law for pH-independent hydrolysis of N-hydroxyphthalimide (NHPTH) is rate = kOH[HO-][SH] where SH represents nonionized NHPTH. The second-order rate constants for the reactions of NMPT with DABCO and Tris are (59.7 ± 6.9) x 10-3 and (11.9 ± 2.3) x 10-4 M-1 s-1, respectively. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
88.
A series of imidazo[2,1-b]thiazole and benzo[d]thiazolo[3,2-a]imidazole analogues were synthesized by stirring an equimolar mixture of dibenzoylacetylene with imidazole/thiazole derivatives in toluene or acetonitrile at room temperature. The products were generated in good yields and characterized by standard analytical techniques such as IR, 1H NMR, 13C NMR and mass spectrometry. The structure of products 19, 20, 22, 24 and 25 were also unambiguously confirmed by single crystal X-ray analysis.  相似文献   
89.
The apparent second-order rate constant (k OH) for hydroxide-ion-catalyzed conversion of 1 to N-(2'-methoxyphenyl)phthalamate (4) is approximately 10(3)-fold larger than k OH for alkaline hydrolysis of N-morpholinobenzamide (2). These results are explained in terms of the reaction scheme 1 --> k(1obs) 3 --> k(2obs) 4 where 3 represents N-(2'-methoxyphenyl)phthalimide and the values of k(2obs)/k(1obs) vary from 6.0 x 10(2) to 17 x 10(2) within [NaOH] range of 5.0 x 10(-3) to 2.0 M. Pseudo-first-order rate constants (k(obs)) for alkaline hydrolysis of 1 decrease from 21.7 x 10(-3) to 15.6 x 10(-3) s(-1) with an increase in ionic strength (by NaCl) from 0.5 to 2.5 M at 0.5 M NaOH and 35 degrees C. The values of k obs, obtained for alkaline hydrolysis of 2 within [NaOH] range 1.0 x 10(-2) to 2.0 M at 35 degrees C, follow the relationship k(obs) = kOH[HO(-)] + kOH'[HO (-)] (2) with least-squares calculated values of kOH and kOH' as (6.38 +/- 0.15) x 10(-5) and (4.59 +/- 0.09) x 10(-5) M (-2) s(-1), respectively. A few kinetic runs for aqueous cleavage of 1, N'-morpholino-N-(2'-methoxyphenyl)-5-nitrophthalamide (5) and N'-morpholino-N-(2'-methoxyphenyl)-4-nitrophthalamide (6) at 35 degrees C and 0.05 M NaOH as well as 0.05 M NaOD reveal the solvent deuterium kinetic isotope effect (= k(obs) (H 2) (O)/ k(obs) (D 2 ) (O)) as 1.6 for 1, 1.9 for 5, and 1.8 for 6. Product characterization study on the cleavage of 5, 6, and N-(2'-methoxyphenyl)-4-nitrophthalimide (7) at 0.5 M NaOD in D2O solvent shows the imide-intermediate mechanism as the exclusive mechanism.  相似文献   
90.
The hydrolytic erosion of poly(d,l-lactide-co-glycolide) (PLGA) nanoparticles (PLGA-NPs) was investigated in vitro. The changes in physical properties of the nanoparticles with time were evaluated by ultra high-pressure liquid chromatographic (UHPLC) analysis, particle size analysis and scanning electron microscopy (SEM). Mass reduction data demonstrated a triphasic erosion pattern for PLGA-NPs with nearly no mass loss (3.0%) up to a week, followed by a rapid mass loss (weeks 1-3, 61.4%), and further followed by slow mass loss (weeks 3-5, 19.8%). SEM revealed microcavitation on the surface of nanoparticles, which tended to increase with the erosion time and eventually particle fragmentation was evident at 5 weeks. A significant increase in particle size was observed at 4 weeks which can be attributed to particle aggregation, however, at about 5 weeks, the particle size decreased significantly owing to particle fragmentation. The hydrolytic erosion of PLGA-NPs was found to be specifically proton catalyzed. The release profile of the model drug, moxifloxacin, from PLGA-NPs was closely related to nanoparticle erosion except for the initial burst release which was based on diffusion. The presence of chitosan in the PLGA-NPs accelerated the rate of erosion of the nanoparticles and reduced the burst release of the drug. An understanding of the erosion mechanism and alteration in erosion by chitosan could give desirable and more uniform drug release kinetics from PLGA-NPs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号