首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   8篇
  国内免费   2篇
化学   81篇
晶体学   2篇
力学   8篇
数学   17篇
物理学   28篇
  2024年   2篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   3篇
  2018年   12篇
  2017年   2篇
  2016年   6篇
  2015年   4篇
  2014年   6篇
  2013年   9篇
  2012年   11篇
  2011年   12篇
  2010年   4篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2006年   4篇
  2005年   10篇
  2004年   5篇
  2003年   5篇
  2002年   1篇
  2001年   3篇
  2000年   3篇
  1999年   2篇
  1997年   1篇
  1995年   2篇
  1994年   2篇
  1990年   1篇
  1972年   1篇
排序方式: 共有136条查询结果,搜索用时 0 毫秒
131.
The bio‐based shape memory polymers have generated immense interest as advanced smart materials. Mesua ferrea L. seed oil‐based hyperbranched polyurethane (HBPU)/Fe3O4 nanocomposites were prepared by the in‐situ polymerization technique. The transmission electron microscopy confirmed the homogeneous distribution of the Fe3O4 nanoparticles in polymer matrix, whereas Fourier transform infrared spectroscopic study revealed the presence of strong interfacial interactions between them. The incorporation of Fe3O4 (0 to 10 wt%) into the HBPU resulted in an increase in tensile strength (5.5–15 MPa) and scratch resistance (3–6 kg). The thermo‐gravimetric analysis indicated the improvement of thermal stability (240–270°C) of the nanocomposites. The nanocomposites exhibited full shape fixity, as well as almost full shape recovery under the microwave stimulus. The shape recovery speed increased with the increase of Fe3O4 nanoparticles content in the nanocomposites. Thus, the studied nanocomposites might be used as advanced shape memory materials in different potential fields. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
132.
The dimensionally restricted, diffusion‐driven volumetric change of almost flat nucleated surface nanobubbles hosted on dispersed nanoscale surfaces is proposed as the probable mechanism of heterogeneous bubble generation during polymer–nanoscale‐nucleant suspension foaming. By conducting numerical simulations, this hypothesis is used to predict the final bubble sizes upon polymeric foaming with nanoscale nucleants and to compare them with reported experimentally determined values. The volumetric change in the bubble hosted on the miniscule surface is envisaged to occur due to two parallel diffusion processes: 1) through the contact line of the bubble cap with the surface, and 2) through the curved gas–polymer interface. The foaming conditions determine the direction and molar rate of both these diffusions. The mechanism explains the relative nucleating efficiency of nanoscale surfaces experimentally observed during reactive and nonreactive polymeric foaming by predicting the growth or dissolution of the bubble. In the case of nonreactive thermoplastic foaming, the size of the bubbles released to the bulk from the nanoscale surface varies in a near linear fashion with respect to the size of the nucleants, limited to a maximum nucleant size. Beyond this maximum, the size of bubble generated is independent of the nucleant size. However, increase in the initial nanoscopic contact angle does not significantly affect the bubble size upon detachment from the surface.  相似文献   
133.
On the basis of an alternative energy partition scheme where density-based quantification of the steric effect was proposed [Liu, S. B. J. Chem. Phys. 2007, 126, 244103], the origin of the internal rotation barrier between the eclipsed and staggered conformers of ethane and n-butane is systematically investigated in this work. Within the new scheme, the total electronic energy is decomposed into three independent components, steric, electrostatic, and fermionic quantum. The steric energy defined in this way is repulsive, exclusive, and extensive and intrinsically linked to Bader's atoms in molecules approach. Two kinds of differences, adiabatic (with optimal structure) and vertical (with fixed geometry), are considered for the molecules in this work. We find that in the adiabatic case the eclipsed conformer possesses a larger steric repulsion than the staggered conformer for both molecules, but in the vertical cases the staggered conformer retains a larger steric repulsion. For ethane, a linear relationship between the total energy difference and the fermionic quantum energy difference is discovered. This linear relationship, however, does not hold for n-butane, whose behaviors in energy component differences are found to be more complicated. The impact of basis set and density functional choices on energy components from the new energy partition scheme has been investigated, as has its comparison with another definition of the steric effect in the literature in terms of the natural bond orbital analysis through the Pauli Exclusion Principle. In addition, profiles of conceptual density functional theory reactivity indices as a function of dihedral angle changes have been examined. Put together, these results suggest that the new energy partition scheme provides insights from a different perspective of internal rotation barriers.  相似文献   
134.
汪传生 《高分子科学》2010,28(1):107-118
<正>A brominated hyperbranched polyether has been synthesized from cyanuric chloride and sodium salt of tetrabromobisphenol-A by an A_2+B_3 approach.The synthesized polyether was characterized by ~1H-NMR,~(13)C-NMR,UV, FTIR spectroscopy and X-ray diffraction studies,measurements of solution viscosity,molecular weight and solubility and elemental and thermogravimetric analyses.The flame retardancy of the synthesized polyether and its blends with commercially available plasticized poly(vinyl chloride)(PVC) and low density polyethylene(LDPE) was investigated by measurements of limiting oxygen index(LOI) value and thermogravimetric analysis.The properties are compared with a non-halogenated similar type of bisphenol-A based aromatic polyether after blending at different dose levels with the same base polymers.The LOI values of these blends indicated that these hyperbranched polyethers acted as flame retardant additives,and antimony trioxide had prominent synergistic effect with the bromo hyperbranched polyether for the above base polymers,and an increment of 4 to 6 units in LOI values was observed.  相似文献   
135.
Visualization of short echo time (TE) metabolites in prostate magnetic resonance spectroscopic imaging is difficult due to lipid contamination and pulse timing constraints. In this work, we present a modified pulse sequence to permit short echo time (TE=40ms) acquisitions with reduced lipid contamination for the detection of short TE metabolites. The modified pulse sequence employs the conformal voxel MRS (CV-MRS) technique, which automatically optimizes the placement of spatial saturation planes to adapt the excitation volume to the shape of the prostate, thus reducing lipid contamination in prostate magnetic resonance spectroscopic imaging (MRSI). Metabolites were measured and assessed using a modified version of LCModel for analysis of in vivo prostate spectra. We demonstrate the feasibility of acquiring high quality spectra at short TEs, and show the measurement of short TE metabolites, myo-inositol, scyllo-inositol, taurine and glutamine/glutamate for both single and multi-voxel acquisitions. In single voxels experiments, the reduction in TE resulted in 57% improvement in the signal-to-noise ratio (SNR). Additional 3D MRSI experiments comparing short (TE=40 ms), and long (TE=130 ms) TE acquisitions revealed a 35% improvement in the number of adequately fitted metabolite peaks (775 voxels over all subjects). This resulted in a 42 ± 24% relative improvement in the number of voxels with detectable citrate that were well-fitted using LCmodel. In this study, we demonstrate that high quality prostate spectra can be obtained by reducing the TE to 40 ms to detect short T2 metabolites, while maintaining positive signal intensity of the spin-coupled citrate multiplet and managing lipid suppression.  相似文献   
136.
Self-organization can be defined as a process of arrangement of entities that start out in an irregular arrangement and evolve into a stable, regular pattern without the aid of an external agent. A system of magnetic particles that are constrained to move only in a plane is reported. The individual components in the system have dipole moments in an orientation perpendicular to the plane of motion and the interaction between components is purely repulsive. For such a system, it is attempted to understand the influence of the boundary of the monolayer on the patterns that emerge. A system with a small number of magnets is found where the range of the magnetic interactions is of the size of the boundary; the symmetry of the boundary imposed on the monolayer plays a crucial role in determining the pattern types, the number of different pattern types, and the frequency of appearance of a particular pattern type. The effect of scaling up the size of the system while maintaining the characteristics of individual components as well as the component areal density is also discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号