首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1579篇
  免费   71篇
  国内免费   7篇
化学   1122篇
力学   50篇
数学   205篇
物理学   280篇
  2023年   27篇
  2022年   14篇
  2021年   38篇
  2020年   33篇
  2019年   31篇
  2018年   14篇
  2017年   18篇
  2016年   53篇
  2015年   52篇
  2014年   51篇
  2013年   86篇
  2012年   92篇
  2011年   104篇
  2010年   54篇
  2009年   60篇
  2008年   57篇
  2007年   77篇
  2006年   58篇
  2005年   61篇
  2004年   50篇
  2003年   42篇
  2002年   37篇
  2001年   20篇
  1999年   19篇
  1998年   16篇
  1997年   18篇
  1996年   18篇
  1995年   17篇
  1994年   11篇
  1993年   13篇
  1992年   19篇
  1988年   10篇
  1987年   9篇
  1986年   20篇
  1985年   19篇
  1983年   14篇
  1982年   11篇
  1981年   10篇
  1980年   17篇
  1979年   12篇
  1978年   10篇
  1977年   10篇
  1976年   10篇
  1975年   18篇
  1974年   18篇
  1973年   10篇
  1972年   10篇
  1971年   15篇
  1968年   12篇
  1964年   9篇
排序方式: 共有1657条查询结果,搜索用时 18 毫秒
101.
Fullerene powder mixtures with different C60/C70 ratios have been analyzed by a variety of techniques, and results have been compared. The fullerence mixtures have been characterized as solutions in n-hexane by high-pressure liquid chromatography (HPLC) and UV-VIS spectroscopy. Thin films of fullerenes on Au(111) have been prepared from the mixtures by sublimation. The sublimation process has been studied by simultaneous thermogravimetric and differential thermal analyses. Thin fullerene films on Au(111) have been investigated by scanning tunneling microscopy (STM). The STM images show primarily two types of ballshaped molecules arranged in a lattice with hexagonal symmetry (fcc(111) face, nearest neighbour distance: 1 nm). The two species differ in diameter. STM images of films made of mixtures of different C60/C70 ratios show that C70 molecules display a larger apparent diameter (0.8 nm) and corrugation than C60 molecules (0.7 nm). The C60/C70 ratios obtained by counting the corresponding molecular species in the STM images of the thin films are compared to the C60/C70 ratios determined by HPLC on hexane solutions of the mixtures. The observed differences might be explained by different rates of sublimation for the two species. The STM images reveal film defects (vacancies and boundaries) and dynamic processes (displacement of C70 molecules and vacancies). In films prepared to have a C60 coverage of less than one monolayer, stable structural units of the C60(111) surface consisting of three or seven C60 molecules are revealed by STM. Occasionally, substructure within individual fullerene molecules is observed.  相似文献   
102.
A new interface for the on-line coupling of a liquid chromatograph to a stable isotope ratio mass spectrometer has been developed and tested. The interface is usable for (13)C/(12)C determination of organic compounds, allowing measurement of small changes in (13)C abundance in individual analyte species. All of the carbon in each analyte is quantitatively converted into CO(2) while the analyte is still dissolved in the aqueous liquid phase. This is accomplished by an oxidizing agent such as ammonium peroxodisulfate. The CO(2) is separated from the liquid phase and transferred to the mass spectrometer. It is shown that the whole integrated process does not introduce isotope fractionation. The measured carbon isotope ratios are accurate and reproducible. The sensitivity of the complete system allows isotope ratio determination down to 400 ng of compound on-column. By-passing the high-performance liquid chromatography (HPLC) separation allows bulk isotopic analysis with substantially lower sample amounts than those required by conventional elemental analyzers. The results of the first applications to amino acids, carbohydrates, and drugs, eluted from various types of HPLC columns, are presented. The wide range of chromatographic methods enables the analysis of compounds never before amenable to isotope ratio mass spectrometry techniques and may lead to the development of many new assays.  相似文献   
103.
Reaction of LRu(III)Cl(3) (L = 1,4,7-trimethyl-1,4,7-triazacyclononane) with 1,2-phenylenediamine (opdaH(2)) in H(2)O in the presence of air affords [LRu(II)(bqdi)(OH(2))](PF(6)) (1), where (bqdi) represents the neutral ligand o-benzoquinone diimine. From an alkaline methanol/water mixture of 1 was obtained the dinuclear species [{LRu(II)(bqdi)}(2)(&mgr;-H(3)O(2))](PF(6))(3) (1a). The coordinated water molecule in 1 is labile and can be readily substituted under appropriate reaction conditions by acetonitrile, yielding [LRu(II)(bqdi)(CH(3)CN)](PF(6))(2) (2), and by iodide and azide anions, affording [LRu(II)(bqdi)I](PF(6)).0.5H(2)O (3) and [LRu(bqdi)(N(3))](PF(6)).H(2)O (4), respectively. Heating of solid 4 in vacuum at 160 degrees C generates N(2) and the dinuclear, nitrido-bridged complex [{LRu(o-C(6)H(4)(NH)(2))}(2)(&mgr;-N)](PF(6))(2) (5). Complex 5 is a mixed-valent, paramagnetic species containing one unpaired electron per dinuclear unit whereas complexes 1-4 are diamagnetic. The crystal structures of 1, 1a.3CH(3)CN, 3, 4.H(2)O, and 5.3CH(3)CN.0.5(toluene) have been determined by X-ray crystallography: 1 crystallizes in the monoclinic space group P2(1)/m, Z = 2, with a = 8.412(2) ?, b = 15.562(3) ?, c = 10.025 ?, and beta = 109.89(2) degrees; 1a.3CH(3)CN, in the monoclinic space group C2/c, Z = 4, with a = 19.858(3) ?, b = 15.483(2) ?, c = 18.192(3) ?, and beta = 95.95(2) degrees; 3, in the orthorhombic space group Pnma, Z = 4, with a = 18.399(4) ?, b = 9.287(2) ?, and c = 12.052(2) ?, 4.H(2)O, in the monoclinic space group P2(1)/c, Z = 4, with a = 8.586(1) ?, b = 15.617(3) ?, c = 16.388(5) ?, and beta = 90.84(2) degrees; and 5.3CH(3)CN.0.5(toluene), in the monoclinic space group P2(1)/c, Z = 4, with a = 15.003(3) ?, b = 16.253(3) ?, c = 21.196(4) ?, and beta = 96.78(3) degrees. The structural data indicate that in complexes 1-4 the neutral o-benzoquinone diimine ligand prevails. In contrast, in 5 this ligand has predominantly o-phenylenediamide character, which would render 5 formally a mixed-valent Ru(IV)Ru(V) species. On the other hand, the Ru-N bond lengths of the Ru-N-Ru moiety at 1.805(5) and 1.767(5) ? are significantly longer than those in other crystallographically characterized Ru(IV)=N=Ru(IV) units (1.72-1.74 ?). It appears that the C(6)H(4)(NH)(2) ligand in 5 is noninnocent and that formal oxidation state assignments to the ligands or metal centers are not possible.  相似文献   
104.
The intermetallic PdGa is a highly selective and potent catalyst in the semihydrogenation of acetylene, which is attributed to the surface stability and isolated Pd atom ensembles. In this context PdGa single crystals of form B with (111) orientation were investigated by means of X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), scanning tunneling microscopy (STM), X-ray photoelectron diffraction (XPD), and low-energy electron diffraction (LEED) to study the electronic and geometric properties of this surface. UPS and thermal desorption spectroscopy (TDS) were used to probe the chemisorption behavior of CO. The PdGa(111) surface exhibits a (1 × 1) LEED and a pronounced XPD pattern indicating an unreconstructed bulk-truncated surface. Low-temperature STM reveals a smooth surface with a (1 × 1) unit cell. No segregation occurs, and no impurities are detected by XPS. The electronic structure and the CO adsorption properties reveal PdGa(111) to be a bulk-truncated intermetallic compound with Pd-Ga partial covalent bonding.  相似文献   
105.
106.
Highly dispersed molybdenum oxide supported on mesoporous silica SBA‐15 has been prepared by anion exchange resulting in a series of catalysts with changing Mo densities (0.2–2.5 Mo atoms nm?2). X‐ray absorption, UV/Vis, Raman, and IR spectroscopy indicate that doubly anchored tetrahedral dioxo MoO4 units are the major surface species at all loadings. Higher reducibility at loadings close to the monolayer measured by temperature‐programmed reduction and a steep increase in the catalytic activity observed in metathesis of propene and oxidative dehydrogenation of propane at 8 % of Mo loading are attributed to frustration of Mo oxide surface species and lateral interactions. Based on DFT calculations, NEXAFS spectra at the O‐K‐edge at high Mo loadings are explained by distorted MoO4 complexes. Limited availability of anchor silanol groups at high loadings forces the MoO4 groups to form more strained configurations. The occurrence of strain is linked to the increase in reactivity.  相似文献   
107.
The effect of the gas‐phase chemical potential on surface chemistry and reactivity of molybdenum carbide has been investigated in catalytic reactions of propane in oxidizing and reducing reactant mixtures by adding H2, O2, H2O, and CO2 to a C3H8/N2 feed. The balance between surface oxidation state, phase stability, carbon deposition, and the complex reaction network involving dehydrogenation reactions, hydrogenolysis, metathesis, water‐gas shift reaction, hydrogenation, and steam reforming is discussed. Raman spectroscopy and a surface‐sensitive study by means of in situ X‐ray photoelectron spectroscopy evidence that the dynamic formation of surface carbon species under a reducing atmosphere strongly shifts the product spectrum to the C3‐alkene at the expense of hydrogenolysis products. A similar response of selectivity, which is accompanied by a boost of activity, is observed by tuning the oxidation state of Mo in the presence of mild oxidants, such as H2O and CO2, in the feed as well as by V doping. The results obtained allow us to draw a picture of the active catalyst surface and to propose a structure–activity correlation as a map for catalyst optimization.  相似文献   
108.
109.
110.
The unexpected but facile preparation of the silver salt of the least coordinating [(RO)3Al‐F‐Al(OR)3]? anion (R=C(CF3)3) by reaction of Ag[Al(OR)4] with one equivalent of PCl3 is described. The mechanism of the formation of Ag[(RO)3Al‐F‐Al(OR)3] is explained based on the available experimental data as well as on quantum chemical calculations with the inclusion of entropy and COSMO solvation enthalpies. The crystal structures of (RO)3Al←OC4H8, Cs+[(RO)2(Me)Al‐F‐Al(Me)(OR)2]?, Ag(CH2Cl2)3+[(RO)3Al‐F‐Al(OR)3]? and Ag(η2‐P4)2+[(RO)3Al‐F‐Al(OR)3]? are described. From the collected data it will be shown that the [(RO)3Al‐F‐Al(OR)3]? anion is the least coordinating anion currently known. With respect to the fluoride ion affinity of two parent Lewis acids Al(OR)3 of 685 kJ mol?1, the ligand affinity (441 kJ mol?1), the proton and copper decomposition reactions (?983 and ?297 kJ mol?1) as well as HOMO level and HOMO–LUMO gap and in comparison with [Sb4F21]?, [Sb(OTeF5)6]?, [Al(OR)4]? as well as [B(RF)4]? (RF=CF3 or C6F5) the [(RO)3Al‐F‐Al(OR)3]? anion is among the best weakly coordinating anions (WCAs) according to each value. In contrast to most of the other cited anions, the [(RO)3Al‐F‐Al(OR)3] anion is available by a simple preparation in conventional inorganic laboratories. The least coordinating character of this anion was employed to clarify the question of the ground state geometry of the Ag(η2‐P4)2+ cation (D2h, D2 or D2d?). In agreement with computational data and NMR spectra it could be shown that the rotation along the Ag‐(P‐P‐centroid) vector has no barrier and that the structure adopted in the solid state depends on packing effects which lead to an almost D2h symmetric Ag(η2‐P4)2+ cation (0 to 10.6° torsion) for the more symmetrical [Al(OR)4]? anion, but to a D2 symmetric Ag(η2‐P4)2+ cation with a 44° twist angle of the two AgP2 planes for the less symmetrical [(RO)3Al‐F‐Al(OR)3]? anion. This implies that silver back bonding, suggested by quantum chemical population analyses to be of importance, is only weak.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号