首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   23篇
化学   237篇
力学   6篇
综合类   2篇
数学   59篇
物理学   61篇
  2023年   11篇
  2022年   19篇
  2021年   38篇
  2020年   39篇
  2019年   35篇
  2018年   16篇
  2017年   11篇
  2016年   20篇
  2015年   21篇
  2014年   13篇
  2013年   20篇
  2012年   11篇
  2011年   20篇
  2010年   11篇
  2009年   7篇
  2008年   11篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   8篇
  2003年   8篇
  2002年   1篇
  2001年   1篇
  2000年   8篇
  1999年   4篇
  1998年   5篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1989年   1篇
  1988年   1篇
排序方式: 共有365条查询结果,搜索用时 203 毫秒
11.
12.
The effect of chemical composition on the Raman spectra of a series of natural calcalkaline silicate glasses has been quantified by performing electron microprobe analyses and obtaining Raman spectra on glassy filaments (~450 µm) derived from a magma mingling experiment. The results provide a robust compositionally‐dependent database for the Raman spectra of natural silicate glasses along the calcalkaline series. An empirical model based on both the acquired Raman spectra and an ideal mixing equation between calcalkaline basaltic and rhyolitic end‐members is constructed enabling the estimation of the chemical composition and degree of polymerization of silicate glasses using Raman spectra. The model is relatively insensitive to acquisition conditions and has been validated using the MPI‐DING geochemical standard glasses 1 as well as further samples. The methods and model developed here offer several advantages compared with other analytical and spectroscopic methods such as infrared spectroscopy, X‐ray fluorescence spectroscopy, electron and ion microprobe analyses, inasmuch as Raman spectroscopy can be performed with a high spatial resolution (1 µm2) without the need for any sample preparation as a nondestructive technique. This study represents an advance in efforts to provide the first database of Raman spectra for natural silicate glasses and yields a new approach for the treatment of Raman spectra, which allows us to extract approximate information about the chemical composition of natural silicate glasses using Raman spectroscopy. We anticipate its application in handheld in situ terrestrial field studies of silicate glasses under extreme conditions (e.g. extraterrestrial and submarine environments). © 2015 The Authors Journal of Raman Spectroscopy Published by John Wiley & Sons Ltd  相似文献   
13.
We have experimentally studied the influence of pulsed laser deposition parameters on the morphological and electrophysical parameters of vanadium oxide films. It is shown that an increase in the number of laser pulses from 10,000 to 60,000 and an oxygen pressure from 3 × 10−4 Torr to 3 × 10−2 Torr makes it possible to form vanadium oxide films with a thickness from 22.3 ± 4.4 nm to 131.7 ± 14.4 nm, a surface roughness from 7.8 ± 1.1 nm to 37.1 ± 11.2 nm, electron concentration from (0.32 ± 0.07) × 1017 cm−3 to (42.64 ± 4.46) × 1017 cm−3, electron mobility from 0.25 ± 0.03 cm2/(V·s) to 7.12 ± 1.32 cm2/(V·s), and resistivity from 6.32 ± 2.21 Ω·cm to 723.74 ± 89.21 Ω·cm. The regimes at which vanadium oxide films with a thickness of 22.3 ± 4.4 nm, a roughness of 7.8 ± 1.1 nm, and a resistivity of 6.32 ± 2.21 Ω·cm are obtained for their potential use in the fabrication of ReRAM neuromorphic systems. It is shown that a 22.3 ± 4.4 nm thick vanadium oxide film has the bipolar effect of resistive switching. The resistance in the high state was (89.42 ± 32.37) × 106 Ω, the resistance in the low state was equal to (6.34 ± 2.34) × 103 Ω, and the ratio RHRS/RLRS was about 14,104. The results can be used in the manufacture of a new generation of micro- and nanoelectronics elements to create ReRAM of neuromorphic systems based on vanadium oxide thin films.  相似文献   
14.
Electrophoretic mobility of SiO2 nanoparticles in a n-hexadecane-chloroform mixture depending on AOT concentration and chloroform content was determined. It was shown that an increase in chloroform content and a decrease in AOT concentration cause a growth in electrophoretic mobility. The use of the values of Debye lengths (characteristic thickness) of the diffuse part of the electric double layer (EDL) that were determined previously allowed us to calculate the electrokinetic potential and to evaluate the stability of organosols. The obtained data were in good correlation with the dynamics of temporal changes of hydrodynamic radius and the intensity of light scattering. Organosols may be used for heteroaggregation (sorption) of Au and Ag nanoparticles on SiO2.  相似文献   
15.
We report three new isomers of C70(CF3)8, structurally related to p7mp‐C70(CF3)10, that are inaccessible by direct trifluoromethylation, but can be easily identified among the products of the transalkylation of higher trifluoromethylfullerenes with C70. The reported compounds are characterized by UV/Vis, 1 D and 2 D COSY 19F NMR spectroscopy, and DFT calculations. A rather unusual addition pattern is observed in p6,i‐C70(CF3)8 in which one addend is attached remotely from the others; polarization of the adjacent unsaturated bonds by the addend makes the molecule readily oxidizable.  相似文献   
16.
Modification of [VO(OPri)3] with oximes in different molar ratios, yielded new class of vanadia precursors, [VO{OPri}3?n{L}n] {where, n = 1–3 and LH = C9H16C=NOH (1–3) and (CH3)2C=NOH (46)}.All the products are yellow in colour. (1) and (2) are liquid/viscous liquid, while others are solids. Molecular weight measurements of all these derivatives and the ESI-mass spectral studies of (1), (2), (3) and (5) indicate their monomeric nature. 1H and 13C{1H} NMR spectra suggest that the oximato moieties are monodentate in solution which was further confirmed by the 51V NMR signals, appeared in the region expected for tetra-coordinated oxo-vanadium atoms. On ageing, a disproportionation reaction occurs in (1) and some crystals appeared. Single crystal X-ray diffraction analyses of the crystals obtained from (1) as well as from (3) were found to be the same and indicate the presence of side-on {dihapto η 2-(N, O)} binding modes of the oximato ligands, leading to the formation of seven coordination environment around the vanadium atom. Thermogravimetric curve of (1) exhibits multi-step decomposition with the formation of V2O5 as the final product at ~850 °C. Sol–gel transformation of (3) yielded (a) VO2 sintered at 300 °C and (b) V2O5 at 600 °C. Similarly, sol–gel transformations of (1) and (2) yielded V2O5 (c) and (d) at 600 °C, respectively. Formation of monoclinic phase in (a) and orthorhombic phase in (b), (c) and (d) were confirmed by powder XRD patterns.  相似文献   
17.
Complexes formed by interaction of E(C6F5)3 (E = B, Al, Ga, In) with excess of acetonitrile (AN) were structurally characterized. Quantum chemical computations indicate that for Al(C6F5)3 and In(C6F5)3 the formation of a complex of 1:2 composition is more advantageous than for B(C6F5)3 and Ga(C6F5)3, in line with experimental observations. Formation of the solvate [Al(C6F5)3 · 2AN] · AN is in agreement with predicted thermodynamic instability of [Al(C6F5)3 · 3AN]. Tensimetry study of B(C6F5)3 · CH3CN reveals its stability in the solid state up to 197 °C. With the temperature increase, the complex undergoes irreversible thermal decomposition with pentafluorobenzene formation.  相似文献   
18.
The kinetic of D,L-lactide polymerization in presence of biocompatible zirconium acetylacetonate initiator was studied by differential scanning calorimetry in isothermal mode at various temperatures and initiator concentrations. The enthalpy of D,L-lactide polymerization measured directly in DSC cell was found to be ΔH=−17.8±1.4 kJ mol−1. Kinetic curves of D,L-lactide polymerization and propagation rate constants were determined for polymerization with zirconium acetylacetonate at concentrations of 250–1000 ppm and temperature of 160–220 °C. Using model or reversible polymerization the following kinetic and thermodynamic parameters were calculated: activation energy Ea=44.51±5.35 kJ mol−1, preexponential constant lnA=15.47±1.38, entropy of polymerization ΔS=−25.14 J mol−1 K−1. The effect of reaction conditions on the molecular weight of poly(D,L-lactide) was shown.  相似文献   
19.
In the present work, we studied in detail the thermochemistry, thermal stability, mechanical sensitivity, and detonation performance for 20 nitro-, cyano-, and methyl derivatives of 1,2,5-oxadiazole-2-oxide (furoxan), along with their bis-derivatives. For all species studied, we also determined the reliable values of the gas-phase formation enthalpies using highly accurate multilevel procedures W2-F12 and/or W1-F12 in conjunction with the atomization energy approach and isodesmic reactions with the domain-based local pair natural orbital (DLPNO) modifications of the coupled-cluster techniques. Apart from this, we proposed reliable benchmark values of the formation enthalpies of furoxan and a number of its (azo)bis-derivatives. Additionally, we reported the previously unknown crystal structure of 3-cyano-4-nitrofuroxan. Among the monocyclic compounds, 3-nitro-4-cyclopropyl and dicyano derivatives of furoxan outperformed trinitrotoluene, a benchmark melt-cast explosive, exhibited decent thermal stability (decomposition temperature >200 °C) and insensitivity to mechanical stimuli while having notable volatility and low melting points. In turn, 4,4′-azobis-dicarbamoyl furoxan is proposed as a substitute of pentaerythritol tetranitrate, a benchmark brisant high explosive. Finally, the application prospects of 3,3′-azobis-dinitro furoxan, one of the most powerful energetic materials synthesized up to date, are limited due to the tremendously high mechanical sensitivity of this compound. Overall, the investigated derivatives of furoxan comprise multipurpose green energetic materials, including primary, secondary, melt-cast, low-sensitive explosives, and an energetic liquid.  相似文献   
20.
To obtain a supported heterogeneous catalyst, laser ablation of metallic palladium in supercritical carbon dioxide was performed in the presence of a carrier, microparticles of γ-alumina. The influence of the ablation process conditions—including supercritical fluid density, ablation, mixing time of the mixture, and laser wavelength—on the completeness and efficiency of the deposition of palladium particles on the surface of the carrier was studied. The obtained composites were investigated by scanning and transmission electron microscopy using energy dispersive spectroscopy. We found that palladium particles were nanosized and had a narrow size distribution (2–8 nm). The synthesized composites revealed high activity as catalysts in the liquid-phase hydrogenation of diphenylacetylene.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号