首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   69篇
  免费   1篇
化学   69篇
数学   1篇
  2019年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   5篇
  2013年   9篇
  2012年   2篇
  2011年   11篇
  2010年   5篇
  2009年   5篇
  2008年   5篇
  2007年   9篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  2000年   2篇
  1993年   1篇
  1991年   2篇
  1988年   1篇
  1987年   4篇
  1986年   1篇
  1981年   1篇
排序方式: 共有70条查询结果,搜索用时 893 毫秒
41.
42.
A liquid chromatography/time-of-flight mass spectrometry (LC/TOFMS) method was developed using the latest high-resolution LC column technology, the ultra performance liquid chromatography (UPLC), and electrospray ionization (ESI) in the positive ion mode. Gradient UPLC separation conditions were optimized for a group of 22 analytes comprising 17 glucocorticosteroids, specific designer steroids such as tetrahydrogestrinone (THG) and specific beta2-agonists such as formoterol. The UPLC/TOFMS separation obtained required 5.5 min only for all the substances tested. Even the critical pair of dexamethasone and betamethasone isomers was almost completely resolved. Thanks to the over 10,000 full-width at half maximum (FWHM) mass resolution and high mass accuracy features of TOFMS 50 mDa window accurate mass chromatograms could be reconstructed for the individual analytes. Sensitive screening in human and calf urine samples fortified at the glucocorticosteroids minimum required performance limit (MRPL) of 30 microg L(-1) (human urine, sports doping) and 2 microg L(-1) (calf urine, veterinary control) could be obtained. The potential of UPLC/TOFMS for confirmatory analysis was shown by determining the accurate mass of all compounds and fragment ions upon in-source collision-induced dissociation (CID) at different energies. The exact mass measurement errors for all glucocorticosteroids were found to be within 6 ppm. Considering veterinary control, limits of detection (LOD) and limits of quantification (LOQ) were determined for most of the analytes in calf urine and found to range from 0.1 to 3.3 and from 0.4 to 4.4 microg L(-1), respectively. The method can be easily extended with other banned substances of interest, as demonstrated by the addition of 21 beta2-agonists to the original analyte mixture in urine, without causing any interferences.  相似文献   
43.
44.
The aim of the present study was to demonstrate the applicability of a yeast androgen and estrogen bioassay in the detection of steroid esters in hair samples of animals treated with a hormone ester cocktail. The outcome of the activity screenings was critically compared with the results previously obtained with LC-MS/MS analysis. Hair samples of one pour-on treated animal, 10 ml DMSO containing 25 mg estradiol benzoate (EB), 60 mg testosterone decanoate (TD) and 60 mg testosterone cypionate (TC), were selected and analyzed with the androgen and estrogen yeast bioassay. Results showed that by the introduction of a hydrolysis step, bioassays can be used to screen for the presence of hormone esters in hair samples. Based on the difference in fluorescence responses between the non-hydrolyzed and the hydrolyzed hair samples, it was possible to detect the presence of EB up to at least 56 days after a single pour-on treatment and to detect the presence of TC and TD up to at least 14 days after the treatment. Although the LC-MS/MS analysis could detect TC and TD up to 49 days after treatment, bioassays have the advantage that they can also detect any (un)known steroid ester.  相似文献   
45.
Multi-analyte binding assays for rapid screening of food contaminants require mass spectrometric identification of compound(s) in suspect samples. An optimal combination is obtained when the same bioreagents are used in both methods; moreover, miniaturisation is important because of the high costs of bioreagents. A concept is demonstrated using superparamagnetic microbeads coated with monoclonal antibodies (Mabs) in a novel direct inhibition flow cytometric immunoassay (FCIA) plus immunoaffinity isolation prior to identification by nano-liquid chromatography–quadrupole time-of-flight-mass spectrometry (nano-LC-Q-ToF-MS). As a model system, the mycotoxin ochratoxin A (OTA) and cross-reacting mycotoxin analogues were analysed in wheat and cereal samples, after a simple extraction, using the FCIA with anti-OTA Mabs. The limit of detection for OTA was 0.15 ng/g, which is far below the lowest maximum level of 3 ng/g established by the European Union. In the immunomagnetic isolation method, a 350-times-higher amount of beads was used to trap ochratoxins from sample extracts. Following a wash step, bound ochratoxins were dissociated from the Mabs using a small volume of acidified acetonitrile/water (2/8 v/v) prior to separation plus identification with nano-LC-Q-ToF-MS. In screened suspect naturally contaminated samples, OTA and its non-chlorinated analogue ochratoxin B were successfully identified by full scan accurate mass spectrometry as a proof of concept for identification of unknown but cross-reacting emerging mycotoxins. Due to the miniaturisation and bioaffinity isolation, this concept might be applicable for the use of other and more expensive bioreagents such as transport proteins and receptors for screening and identification of known and unknown (or masked) emerging food contaminants.  相似文献   
46.
Since its introduction, desorption electrospray ionization (DESI) mass spectrometry (MS) has been mainly applied in pharmaceutical and forensic analysis. We expect that DESI will find its way in many different fields, including food analysis. In this review, we summarize DESI developments aimed at controlling chemical contaminants in food. Data are given for analysis of pesticides, natural toxins, veterinary drugs, food additives, adulteration, packaging migrants, and for applications of food forensics.We discuss practical aspects of DESI, including its strengths and weaknesses, highlighting specific features of performing chemical reactions during the desorption/ionization process in order to enhance sensitivity and selectivity.Finally, we discuss the position of DESI with respect to current food-analysis regulation and legislation. We envisage that DESI can be a rapid, qualitative or semi-quantitative, screening tool, ultimately being applied on site prior to sampling and transport of samples to food-control laboratories.  相似文献   
47.
48.
We developed a procedure to determine the “identification power” of an LC-MS/MS method operated in the MRM acquisition mode, which is related to its selectivity. The probability of any compound showing the same precursor ion, product ions, and retention time as the compound of interest is used as a measure of selectivity. This is calculated based upon empirical models constructed from three very large compound databases. Based upon the final probability estimation, additional measures to assure unambiguous identification can be taken, like the selection of different or additional product ions. The reported procedure in combination with criteria for relative ion abundances results in a powerful technique to determine the (un)certainty of the selectivity of any LC-MS/MS analysis and thus the risk of false positive results. Furthermore, the procedure is very useful as a tool to validate method selectivity.
Figure
  相似文献   
49.
A high-throughput bioaffinity liquid chromatography-mass spectrometry (BioMS) approach was developed and applied for the screening and identification of recombinant human estrogen receptor α (ERα) ligands in dietary supplements. For screening, a semi-automated mass spectrometric ligand binding assay was developed applying 13C2, 15?N-tamoxifen as non-radioactive label and fast ultra-high-performance–liquid chromatography–electrospray ionisation–triple-quadrupole-MS (UPLC-QqQ-MS), operated in the single reaction monitoring mode, as a readout system. Binding of the label to ERα-coated paramagnetic microbeads was inhibited by competing estrogens in the sample extract yielding decreased levels of the label in UPLC-QqQ-MS. The label showed high ionisation efficiency in positive electrospray ionisation (ESI) mode, so the developed BioMS approach is able to screen for estrogens in dietary supplements despite their poor ionisation efficiency in both positive and negative ESI modes. The assay was performed in a 96-well plate, and all these wells could be measured within 3 h. Estrogens in suspect extracts were identified by full-scan accurate mass and collision-cross section (CCS) values from a UPLC-ion mobility-Q-time-of-flight-MS (UPLC-IM-Q-ToF-MS) equipped with a novel atmospheric pressure ionisation source. Thanks to the novel ion source, this instrument provided picogram sensitivity for estrogens in the negative ion mode and an additional identification point (experimental CCS values) next to retention time, accurate mass and tandem mass spectrometry data. The developed combination of bioaffinity screening with UPLC-QqQ-MS and identification with UPLC-IM-Q-ToF-MS provides an extremely powerful analytical tool for early warning of ERα bioactive compounds in dietary supplements as demonstrated by analysis of selected dietary supplements in which different estrogens were identified.
Figure
Principle of the competition inhibition bioaffinity mass spectrometry screening assay illustrated with estrogen receptor α-coated magnetic microbeads and an MS label  相似文献   
50.
[首页] « 上一页 [1] [2] [3] [4] 5 [6] [7] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号