首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   432篇
  免费   6篇
化学   281篇
晶体学   6篇
力学   9篇
数学   43篇
物理学   99篇
  2023年   3篇
  2022年   12篇
  2021年   13篇
  2020年   11篇
  2019年   9篇
  2018年   8篇
  2017年   4篇
  2016年   9篇
  2015年   8篇
  2014年   16篇
  2013年   25篇
  2012年   31篇
  2011年   33篇
  2010年   17篇
  2009年   15篇
  2008年   15篇
  2007年   16篇
  2006年   28篇
  2005年   20篇
  2004年   16篇
  2003年   10篇
  2002年   5篇
  2000年   6篇
  1999年   3篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1995年   2篇
  1992年   5篇
  1991年   3篇
  1989年   2篇
  1988年   2篇
  1986年   2篇
  1985年   2篇
  1984年   6篇
  1983年   5篇
  1981年   8篇
  1980年   4篇
  1979年   8篇
  1978年   6篇
  1977年   7篇
  1976年   4篇
  1975年   6篇
  1974年   3篇
  1973年   5篇
  1968年   2篇
  1963年   1篇
  1958年   3篇
  1955年   1篇
  1954年   1篇
排序方式: 共有438条查询结果,搜索用时 15 毫秒
41.
Oxidation of some hydrocarbons dissolved in acetic acid by cerium(IV) sulphate at 100 °C in the presence of traces of iridium(III) chloride (catalyst-substrate 1:56818 to 151515) in the solution phase resulted in good to excellent yields of corresponding carbonyl compounds. In the cases of cyclohexane and benzene, 44% and 51.8% yields of corresponding carbonyl compounds were obtained, whereas in other cases, yield ranged from 34.9 to 99.8%. Yield decreased when reactions were performed in a microwave oven by adsorbing reactants (except acetic acid) on alumina. Decrease in the yield was probably due to the high temperature generated during the course of the reaction, resulting in the loss of organics from evaporation. Conditions were optimized for the highest yields under ambient conditions.  相似文献   
42.
Nidhi Sinha 《Molecular physics》2013,111(18):2527-2534
ABSTRACT

This work aims at the calculation of various inelastic cross sections for three pentane isomers, namely normal pentane, isopentane and neopentane. The direct ionisation, positronium formation, total ionisation and total inelastic cross section are reported for these targets using modified spherical complex optical potential (mSCOP) and complex scattering potential-ionisation contribution (CSP-ic) method. The cross sections are computed for a wide energy range from their respective thresholds to 5?keV. We have also attempted to probe the isomeric effect in the inelastic scattering of positrons from the pentane isomers. The cross sections for the three isomers were found to overlap for the entire comparative energy range except at the peak region. Hence, in general no appreciable isomeric effect was beheld for the pentane isomers.  相似文献   
43.
In this paper, we study a rich vehicle routing problem incorporating various complexities found in real-life applications. The General Vehicle Routing Problem (GVRP) is a combined load acceptance and generalised vehicle routing problem. Among the real-life requirements are time window restrictions, a heterogeneous vehicle fleet with different travel times, travel costs and capacity, multi-dimensional capacity constraints, order/vehicle compatibility constraints, orders with multiple pickup, delivery and service locations, different start and end locations for vehicles, and route restrictions for vehicles. The GVRP is highly constrained and the search space is likely to contain many solutions such that it is impossible to go from one solution to another using a single neighbourhood structure. Therefore, we propose iterative improvement approaches based on the idea of changing the neighbourhood structure during the search.  相似文献   
44.
A variety of olefins have been shown to undergo conversion to the corresponding α-bromo/iodoketones when reacted with NBS/NIS and IBX in DMSO at room temperature. While the reaction is found to occur rapidly with e-rich arylolefins leading to the corresponding haloketones in 65-95% yields in 0.3-3.0 h, those containing e-withdrawing groups are found to yield diketones concomitantly, such that the latter are the exclusive products over extended duration of the reactions.  相似文献   
45.
In this paper, we propose an implicit higher-order compact (HOC) finite difference scheme for solving the two-dimensional (2D) unsteady Navier–Stokes (N–S) equations on nonuniform space grids. This temporally second-order accurate scheme which requires no transformation from the physical to the computational plane is at least third-order accurate in space, which has been demonstrated with numerical experiments. It efficiently captures both transient and steady-state solutions of the N–S equations with Dirichlet as well as Neumann boundary conditions. The proposed scheme is likely to be very useful for the computation of transient viscous flows involving free and wall bounded shear layers which invariably contain spatial scale variation. Numerical results are presented and compared with analytical as well as established numerical data. Excellent comparison is obtained in all the cases.  相似文献   
46.
Predicting relative protein–ligand binding affinities is a central pillar of lead optimization efforts in structure-based drug design. The site identification by ligand competitive saturation (SILCS) methodology is based on functional group affinity patterns in the form of free energy maps that may be used to compute protein–ligand binding poses and affinities. Presented are results obtained from the SILCS methodology for a set of eight target proteins as reported originally in Wang et al. (J. Am. Chem. Soc., 2015, 137, 2695–2703) using free energy perturbation (FEP) methods in conjunction with enhanced sampling and cycle closure corrections. These eight targets have been subsequently studied by many other authors to compare the efficacy of their method while comparing with the outcomes of Wang et al. In this work, we present results for a total of 407 ligands on the eight targets and include specific analysis on the subset of 199 ligands considered previously. Using the SILCS methodology we can achieve an average accuracy of up to 77% and 74% when considering the eight targets with their 199 and 407 ligands, respectively, for rank-ordering ligand affinities as calculated by the percent correct metric. This accuracy increases to 82% and 80%, respectively, when the SILCS atomic free energy contributions are optimized using a Bayesian Markov-chain Monte Carlo approach. We also report other metrics including Pearson''s correlation coefficient, Pearlman''s predictive index, mean unsigned error, and root mean square error for both sets of ligands. The results obtained for the 199 ligands are compared with the outcomes of Wang et al. and other published works. Overall, the SILCS methodology yields similar or better-quality predictions without a priori need for known ligand orientations in terms of the different metrics when compared to current FEP approaches with significant computational savings while additionally offering quantitative estimates of individual atomic contributions to binding free energies. These results further validate the SILCS methodology as an accurate, computationally efficient tool to support lead optimization and drug discovery.

Predicting relative protein–ligand binding affinities is a central pillar of lead optimization efforts in structure-based drug design.  相似文献   
47.
The objectives of the present investigation were to prepare and characterize solid inclusion complexes of Etodolac (ETD) with β-cyclodextrin (β-CD) in order to study the effect of complexation on the dissolution rate of ETD, a hydrophobic guest molecule. Phase solubility curve was classified as a typical AL-type for the cyclodextrins (CD’s), showing that soluble complex was formed. The inclusion complexes in the molar ratio of 1:1 and 1:2 (β-CD–ETD) were prepared by various methods such as kneading, co-evaporation and in molar ratio of 1:1 by spray dried technique respectively. The molecular behaviors of ETD in all samples were characterized by nuclear magnetic resonance (NMR) spectroscopy, fourier-transform infrared (FTIR) spectroscopy, differential scanning calorimetry (DSC) and powder X-ray diffraction (PXRD) studies and Scanning Electron microscopy (SEM) analysis. The results of these studies indicated that complexes prepared by kneading, co-evaporation and spray drying techniques showed inclusion of the ETD molecule into the CD’s cavities. The highest improvement in in vitro dissolution profiles was observed in complexes prepared with spray dried technique. Mean in vitro dissolution time indicated significant difference between the release profiles of ETD from complexes and physical mixtures and from pure ETD.  相似文献   
48.
The effect of different hydrotropic salts on the microenvironment at the anionic head group region of sodium dodecyl sulphate (SDS) micelle has been studied through time-resolved fluorescence anisotropy measurements of a solubilized probe, coumarin-153 (C153). The organic cations of the hydrotropic salts used in this study, i.e. aniline hydrochloride (AHC) and o-, m- and p-toluidine hydrochlorides (OTHC, MTHC and PTHC, respectively), differ in their charge to size ratio and hydrophobicity. Present study utilizes the sensitivity of the fluorescence technique to understand the changes in the micropolarity and microviscosity experienced by the fluorescent probe, C153, solubilized in the micellar Stern layer, on addition of different hydrotropic salts. Significant changes are observed in the rotational relaxation dynamics of the probe with increasing concentration of the salts. The changes in the rotational relaxation dynamics clearly reflect the sphere to rod transition in the SDS micelles and correspond nicely with the reported results from dynamic light scattering measurements. The growth behavior of SDS micelles is found to be sensitive to the hydrophobicity of the organic cations. The charge to size ratio of the organic cations also indicated to play a role in inducing the sphere to rod transition in the SDS micelles. The interesting observation made from this study is that the sphere to rod transition of SDS micelles is largely facilitated by the presence of the hydrotropic salts and such a transition is successfully indicated by the simple fluorescence anisotropy measurements of a probe in the micelle carried out in the presence of different hydrotropic salts.  相似文献   
49.
The inhibition of dipeptidyl peptidase IV (DPP-IV) has emerged as an attractive target in the treatment of type 2 diabetes. In view of this development, a critical analysis of structural requirements of the DPP-IV inhibitors is envisioned to identify the significant features toward design of selective inhibitors. The comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) contour plots of pyrrolidine based analogues are used to analyze the structural requirements of a DPP-IV active site. The CoMFA model has shown a cross-validated q 2 of 0.651 with a non-cross-validated r 2 of 0.882 and explained 70.6% variance in the activity of external test compounds. In this, the steric and electrostatic fields have respectively contributed 59.8 and 40.2%, respectively, to the explained activity of the compounds. The CoMSIA model has shown optimum predictivity (cross-validated q 2 = 0.661; non-cross-validated r 2 = 0.803; external test set’s predictive r 2 = 0.706) with four molecular fields namely, steric, electrostatic, hydrogen bond (HB)-donor, and HB-acceptor. The contour plots of molecular fields resulting from these studies have suggested: (i) steric restriction with small electron rich substituent at 2- and 3-position of pyrrolidine ring, (ii) presence of electropositive ring linker between the pyrrolidine head and aryl tail, (iii) presence of electron-rich groups around the aryl tail moiety, and (iv) presence of sulfonamide between the ring linker and aryl tail which would increase DPP-IV binding affinity of the compounds. These findings will help in the design of structurally related/new compounds as potential DPP-IV inhibitors.  相似文献   
50.
Core–shell nanostructures have emerged as an important class of functional materials with potential applications in diverse fields, especially in health sciences. In this article, nanoengineering of novel magnetic colloidal dispersion containing surface modifiable silica with a core of single domain magnetite nanoparticles loaded with photosensitizer (PS) drug “Methylene blue” (MB) has been described. Magnetite core is produced by the well-established chemical coprecipitation technique and silica shell is formed over it by the modified hydrolysis and condensation of TEOS (tetraethyl orthosilicate). Conditions for reaction kinetics have been established to tailor the core–shell structures in the form of nanospheres and nanocapsules. MB is loaded into the nanostructures by demethylation reaction. The major conclusion drawn from this study is that the synthesis route yields stable, non-aggregated MB loaded superparamagnetic magnetite-silica nanostructures with tailored morphology, tunable loading, and excellent magnetic properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号