首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1414篇
  免费   77篇
  国内免费   4篇
化学   1180篇
晶体学   4篇
力学   25篇
数学   166篇
物理学   120篇
  2023年   18篇
  2022年   25篇
  2021年   42篇
  2020年   35篇
  2019年   38篇
  2018年   17篇
  2017年   21篇
  2016年   45篇
  2015年   53篇
  2014年   55篇
  2013年   71篇
  2012年   92篇
  2011年   120篇
  2010年   59篇
  2009年   45篇
  2008年   77篇
  2007年   74篇
  2006年   80篇
  2005年   71篇
  2004年   82篇
  2003年   61篇
  2002年   52篇
  2001年   10篇
  2000年   16篇
  1999年   20篇
  1998年   14篇
  1997年   4篇
  1996年   16篇
  1995年   11篇
  1994年   6篇
  1992年   7篇
  1991年   6篇
  1990年   7篇
  1989年   7篇
  1988年   10篇
  1987年   8篇
  1986年   5篇
  1985年   6篇
  1984年   8篇
  1983年   6篇
  1982年   10篇
  1981年   7篇
  1980年   12篇
  1979年   17篇
  1978年   8篇
  1977年   12篇
  1976年   11篇
  1975年   4篇
  1974年   4篇
  1972年   3篇
排序方式: 共有1495条查询结果,搜索用时 249 毫秒
41.
The protected ethidium nucleosides 8-(3′,5′-di-O-benzoyl-2′-deoxy-d-ribofuranosyl)-3-acetamido-5-ethyl-6-phenyl-phenanthridinium (5), 8-(3′,5′-di-O-acetyl-2′-deoxy-d-ribofuranosyl)-3-acetamido-5-ethyl-6-phenyl-phenanthridinium (6), and the acyclic analog 8-[(3R)-1,3-dihydroxy-4-yl]-acetamido-3-amino-5-ethyl-6-phenyl-phenanthridinium (3) were prepared. Based on to their different stability, only the acyclic derivative 3 seems to be suitable for oligonucleotide synthesis. Furthermore, the acyclic ethidium nucleoside analog 3 exhibits comparable absorption and emission properties of the underivatized ethidium (1).  相似文献   
42.
Smith ND  Goodman M 《Organic letters》2003,5(7):1035-1037
[reaction: see text] We report here the enantioselective synthesis of Boc-alpha-methyl-d-cysteine(PMB)-OH and lanthionine building blocks through the regioselective ring opening of key intermediate Boc-alpha-methyl-d-serine-beta-lactone.  相似文献   
43.
A carbazole homopolymer and carbazole copolymers based on 9,9'-dialkyl-[3,3']-bicarbazolyl, 2,5-diphenyl-[1,3,4]-oxadiazole and 9,9-bis(4-[3,7-dimethyloctyloxy]phenyl)fluorene were synthesized and their electrical and photophysical properties were characterized with respect to their application as host in phosphorescent polymer light-emitting diodes. It is shown that the triplet energy of a polymer depends on the specific connections between its building blocks. Without changing the composition of the polymer, its triplet energy can be increased from 2.3 to 2.6 eV by changing the way in which the different building blocks are coupled together. For poly(9-vinylcarbazole) (PVK), a carbazole polymer often used as host for high-energy triplet emitters in polymer light-emitting diodes, a large hole-injection barrier of about 1 eV exists due to the low-lying HOMO level of PVK. For all carbazole polymers presented here, the HOMO levels are much closer to the Fermi level of a commonly used anode such as ITO and/or a commonly used hole-injection layer such as PEDOT:PSS. This makes high current densities and consequently high luminance levels possible at moderate applied voltages in polymer light-emitting diodes. A double-layer polymer light-emitting diode is constructed comprising a PEDOT:PSS layer as hole-injection layer and a carbazole-oxadiazole copolymer doped with a green triplet emitter as emissive layer that shows an efficacy of 23 cd/A independent of current density and light output.  相似文献   
44.
We describe the preparation and characterization of a photonic crystal filled with a luminescent conjugated polyelectrolyte, sulfonated poly(phenylene ethynylene). The conjugated polymer was coated onto the nanospheres by the layer-by-layer method and assembled directly into a fluorescent opal structure avoiding the defects associated with post-filling schemes. These structures exhibit strong angle-dependent luminescent properties. By using multiple layers, we further demonstrate control over the emissive bands of the opal.  相似文献   
45.
The molecular recognition of peptides and proteins in aqueous solution by designed molecules remains an elusive goal with broad implications for basic biochemical research and for sensors and separations technologies. This paper describes the recognition of N-terminal tryptophan in aqueous solution by the synthetic host cucurbit[8]uril (Q8). Q8 is known to form 1:1:1 heteroternary complexes with methyl viologen (MV) and a second aromatic guest. Here, the complexes of Q8.MV with (i) the four natural aromatic alpha-amino acids, (ii) four singly charged tryptophan derivatives, and (iii) four tryptophan-containing tripeptides were characterized by isothermal titration calorimetry, mass spectrometry, and UV-visible, fluorescence, and (1)H NMR spectroscopy. We find that Q8.MV binds Trp-Gly-Gly with high affinity (K(a) = 1.3 x 10(5) M(-1)), with 6-fold specificity over Gly-Trp-Gly, and with 40-fold specificity over Gly-Gly-Trp. Analysis of the nine indole-containing compounds suggests that peptide recognition is mediated by the electrostatic charge(s) proximal to the indole, and that the mode of binding is consistent for these compounds. Complex formation is accompanied by the growth of a visible charge-transfer band and the quenching of indole fluorescence. These optical properties, combined with the stability and selectivity of this system, are promising for applications in sensing and separating specific peptides.  相似文献   
46.
Current solution NMR experiments for characterizing conformational exchange processes in large proteins are limited to exchange rates ca. 500-3000 s-1. A TROSY-based constant relaxation time (R1rho - R1) experiment is designed to extend this capability to measure motion with rates up to 105 s-1 in large macromolecules. The experiment combines off-resonance spin-lock rf fields, which provide access to the faster time-scale dynamics, with TROSY coherence selection, which extends the molecular-weight range available for study. When implemented on the 53-kDa dimeric enzyme triosephosphate isomerase, the experiment yielded substantial gains in signal-to-noise (up to 60%) over current experiments at modest static magnetic fields (14.1 T). The TROSY (R1rho - R1) experiment should therefore be of general utility for investigation of fast conformational exchange events in large proteins.  相似文献   
47.
Prostaglandin H synthase (PGHS) catalyzes the conversion of arachidonic acid to prostaglandin G(2) in the cyclooxygenase reaction. The first step of the mechanism has been proposed to involve abstraction of the pro-S hydrogen atom from C13 to generate a pentadienyl radical spanning C11-C15. We report here the synthesis of six site-specifically deuterated arachidonic acids to investigate the structure of the radical intermediate. The preparation of these compounds was achieved using a divergent scheme that involved one advanced intermediate for all targets. The synthetic design introduced the label late in the routes and allowed the utilization of common synthetic intermediates in the preparation of various targets. Both 13(R)- and 13(S)-deuterium-labeled arachidonic acids were synthesized in high enantiomeric purity as deduced from soybean lipoxygenase assays and mass spectrometric analysis of the resulting enzymatic products. Each synthetic compound was reacted under anaerobic conditions with the wide singlet tyrosyl radical of PGHS-2 to generate a radical intermediate that was analyzed by EPR. Deuterium substitution at positions 11, 13(S), and 15 resulted in the loss of one hyperfine interaction, indicating that the protons at these positions interact with the unpaired electron. Simulation of the spectra was achieved with one set of parameters that are consistent with the assignment of a pentadienyl radical. Use of 16-[(2)H(2)]-arachidonic acid indicated that only one of the protons at C16 gives rise to a strong hyperfine interaction. The findings are discussed in the context of two proposed mechanisms for the cyclooxygenase reaction.  相似文献   
48.
We have generated a novel silver(I)-mediated unnatural DNA base pair consisting of two 2,6-bis(ethylthiomethyl)pyridine nucleobases SPy. This metallo-base pair has a remarkably high pairing stability and selectivity which rivals that of the natural base pairs dA:dT and dC:dG. UV-melting experiments revealed that the dSPy:dSPy self-pair can replace natural base pairs at multiple sites and still form stable DNA duplexes.  相似文献   
49.
Co(2+)cobalmain (Co(2+)Cbl) is implicated in the catalytic cycles of all adenosylcobalamin (AdoCbl)-dependent enzymes, as in each case catalysis is initiated through homolytic cleavage of the cofactor's Co-C bond. The rate of Co-C bond homolysis, while slow for the free cofactor, is accelerated by 12 orders of magnitude when AdoCbl is bound to the protein active site, possibly through enzyme-mediated stabilization of the post-homolysis products. As an essential step toward the elucidation of the mechanism of enzymatic Co-C bond activation, we employed electronic absorption (Abs), magnetic circular dichroism (MCD), and resonance Raman spectroscopies to characterize the electronic excited states of Co(2+)Cbl and Co(2+)cobinamide (Co(2+)Cbi(+), a cobalamin derivative that lacks the nucleotide loop and 5,6-dimethylbenzimazole (DMB) base and instead binds a water molecule in the lower axial position). Although relatively modest differences exist between the Abs spectra of these two Co(2+)corrinoid species, MCD data reveal that substitution of the lower axial ligand gives rise to dramatic changes in the low-energy region where Co(2+)-centered ligand field transitions are expected to occur. Our quantitative analysis of these spectral changes within the framework of time-dependent density functional theory (TD-DFT) calculations indicates that corrin-based pi --> pi transitions, which dominate the Co(2+)corrinoid Abs spectra, are essentially insulated from perturbations of the lower ligand environment. Contrastingly, the Co(2+)-centered ligand field transitions, which are observed here for the first time using MCD spectroscopy, are extremely sensitive to alterations in the Co(2+) ligand environment and thus may serve as excellent reporters of enzyme-induced perturbations of the Co(2+) state. The power of this combined spectroscopic/computational methodology for studying Co(2+)corrinoid/enzyme active site interactions is demonstrated by the dramatic changes in the MCD spectrum as Co(2+)Cbi(+) binds to the adenosyltransferase CobA.  相似文献   
50.
Two new pentadentate, pendent arm macrocyclic ligands of the type 1-alkyl-4,7-bis(4-tert-butyl-2-mercaptobenzyl)-1,4,7-triazacyclononane where alkyl represents an isopropyl, (L(Pr))(2-), or an ethyl group, (L(Et))(2-), have been synthesized. It is shown that they bind strongly to ferric ions generating six-coordinate species of the type [Fe(L(alk))X]. The ground state of these complexes is governed by the nature of the sixth ligand, X: [Fe(III)(L(Et))Cl] (2) possesses an S = 5/2 ground state as do [Fe(III)(L(Et))(OCH(3))] (3) and [Fe(III)(L(Pr))(OCH(3))] (4). In contrast, the cyano complexes [Fe(III)(L(Et))(CN)] (5) and [Fe(III)(L(Pr))(CN)] (6) are low spin ferric species (S = 1/2). The octahedral [FeNO](7) nitrosyl complex [Fe(L(Pr))(NO)] (7) displays spin equilibrium behavior S = 1/2<==>S = (3)/(2) in the solid state. Complexes [Zn(L(Pr))] (1), 4.CH(3)OH, 5.0.5toluene.CH(2)Cl(2), and 7.2.5CH(2)Cl(2) have been structurally characterized by low-temperature (100 K) X-ray crystallography. All iron complexes have been carefully studied by zero- and applied-field M?ssbauer spectroscopy. In addition, Sellmann's complexes [Fe(pyS(4))(NO)](0/1+) and [Fe(pyS(4))X] (X = PR(3), CO, SR(2)) have been studied by EPR and M?ssbauer spectroscopies and DFT calculations (pyS(4) = 2,6-bis(2-mercaptophenylthiomethyl)pyridine(2-)). It is concluded that the electronic structure of 7 with an S = 1/2 ground state is low spin ferrous (S(Fe) = 0) with a coordinated neutral NO radical (Fe(II)-NO) whereas the S = 3/2 state corresponds to a high spin ferric (S(Fe) = 5/2) antiferromagnetically coupled to an NO(-) anion (S = 1). The S = 1/2<==>S = 3/2 equilibrium is then that of valence tautomers rather than that of a simple high spin<==>low spin crossover.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号