首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3348篇
  免费   197篇
  国内免费   10篇
化学   2274篇
晶体学   6篇
力学   116篇
数学   603篇
物理学   556篇
  2023年   44篇
  2022年   60篇
  2021年   82篇
  2020年   72篇
  2019年   99篇
  2018年   70篇
  2017年   46篇
  2016年   145篇
  2015年   120篇
  2014年   125篇
  2013年   194篇
  2012年   302篇
  2011年   329篇
  2010年   181篇
  2009年   158篇
  2008年   250篇
  2007年   229篇
  2006年   216篇
  2005年   182篇
  2004年   154篇
  2003年   112篇
  2002年   96篇
  2001年   40篇
  2000年   39篇
  1999年   26篇
  1998年   16篇
  1997年   14篇
  1996年   9篇
  1995年   5篇
  1994年   9篇
  1993年   9篇
  1992年   6篇
  1991年   3篇
  1990年   5篇
  1989年   5篇
  1988年   6篇
  1987年   7篇
  1986年   5篇
  1985年   5篇
  1984年   4篇
  1983年   6篇
  1982年   6篇
  1981年   7篇
  1980年   3篇
  1979年   4篇
  1977年   4篇
  1976年   5篇
  1975年   4篇
  1974年   6篇
  1929年   4篇
排序方式: 共有3555条查询结果,搜索用时 531 毫秒
151.
152.
We assemble a versatile molecular scaffold from simple building blocks to create binary and multiplexed stable isotope reagents for quantitative mass spectrometry. Termed Protected Amine Labels (PAL), these reagents offer multiple analytical figures of merit including, (1) robust targeting of peptide N-termini and lysyl side chains, (2) optimal mass spectrometry ionization efficiency through regeneration of primary amines on labeled peptides, (3) an amino acid-based mass tag that incorporates heavy isotopes of carbon, nitrogen, and oxygen to ensure matched physicochemical and MS/MS fragmentation behavior among labeled peptides, and (4) a molecularly efficient architecture, in which the majority of hetero-atom centers can be used to synthesize a variety of nominal mass and sub-Da isotopologue stable isotope reagents. We demonstrate the performance of these reagents in well-established strategies whereby up to four channels of peptide isotopomers, each separated by 4 Da, are quantified in MS-level scans with accuracies comparable to current commercial reagents. In addition, we utilize the PAL scaffold to create isotopologue reagents in which labeled peptide analogs differ in mass based on the binding energy in carbon and nitrogen nuclei, thereby allowing quantification based on MS or MS/MS spectra. We demonstrate accurate quantification for reagents that support 6-plex labeling and propose extension of this scheme to 9-channels based on a similar PAL scaffold. Finally, we provide exemplar data that extend the application of isotopologe-based quantification reagents to medium resolution, quadrupole time-of-flight mass spectrometers.
Figure
115F  相似文献   
153.
Platinum complexes are the most widely used anticancer drugs; however, new generations of agents are needed. The organoiridium(III) complex [(η5‐Cpxbiph)Ir(phpy)(Cl)] ( 1‐Cl ), which contains π‐bonded biphenyltetramethylcyclopentadienyl (Cpxbiph) and C^N‐chelated phenylpyridine (phpy) ligands, undergoes rapid hydrolysis of the chlorido ligand. In contrast, the pyridine complex [(η5‐Cpxbiph)Ir(phpy)(py)]+ ( 1‐py ) aquates slowly, and is more potent (in nanomolar amounts) than both 1‐Cl and cisplatin towards a wide range of cancer cells. The pyridine ligand protects 1‐py from rapid reaction with intracellular glutathione. The high potency of 1‐py correlates with its ability to increase substantially the level of reactive oxygen species (ROS) in cancer cells. The unprecedented ability of these iridium complexes to generate H2O2 by catalytic hydride transfer from the coenzyme NADH to oxygen is demonstrated. Such organoiridium complexes are promising as a new generation of anticancer drugs for effective oxidant therapy.  相似文献   
154.
A high‐yielding sequence of [2+2] cycloaddition–retroelectrocyclization of ynamides with tetracyanoethylene (TCNE) is described. The reaction provided tetracyanobutadiene (TCBD) species, which were characterized by various techniques. DFT and TD‐DFT calculations were also performed to complement experimental findings.  相似文献   
155.
Following our previous mechanistic studies of multicomponent Ugi‐type reactions, theoretical calculations have been performed to predict the efficiency of new substrates in Ugi–Smiles couplings. First, as predicted, 2,4,6‐trichlorophenol experimentally gave the corresponding aryl‐imidate. Theoretical predictions of nitrosophenols as good acidic partners were then successfully confirmed by experiments. In the latter case, the reaction offers a new access to benzimidazoles.  相似文献   
156.
The synthesis and physical characterization of a new class of N‐heterocycle–boryl radicals is presented, based on five membered ring ligands with a N(sp2) complexation site. These pyrazole–boranes and pyrazaboles exhibit a low bond dissociation energy (BDE; B?H) and accordingly excellent hydrogen transfer properties. Most importantly, a high modulation of the BDE(B?H) by the fine tuning of the N‐heterocyclic ligand was obtained in this series and could be correlated with the spin density on the boron atom of the corresponding radical. The reactivity of the latter for small molecule chemistry has been studied through the determination of several reaction rate constants corresponding to addition to alkenes and alkynes, addition to O2, oxidation by iodonium salts and halogen abstraction from alkyl halides. Two selected applications of N‐heterocycle–boryl radicals are also proposed herein, for radical polymerization and for radical dehalogenation reactions.  相似文献   
157.
The synthesis of 3‐aryl‐2‐cyclohexenones is a topic of current interest as they are not only privileged structures in bioactive molecules, but they are also relevant feedstocks for the synthesis of substituted phenols or anilines, which are ubiquitous structural elements both in drug design and medicinal chemistry. A simple and sustainable one‐pot aerobic double dehydrogenative reaction under mild conditions for the introduction of arenes in the β‐position of cyclic ketones has been developed. Starting from the corresponding saturated ketone, this reaction sequence proceeds under relatively low Pd catalyst loading and involves catalytic amounts of electron‐transfer mediators (ETMs) under ambient oxygen pressure.  相似文献   
158.
The practical utility of ionic liquids (ILs) makes the absence (heretofore) of reported examples from nature quite puzzling, given the facility with which nature produces many other types of exotic but utilitarian substances. In that vein, we report here the identification and characterization of a naturally occurring protic IL. It can be formed during confrontations between the ants S. invicta and N. fulva. After being sprayed with alkaloid‐based S. invicta venom, N. fulva detoxifies by grooming with its own venom, formic acid. The mixture is a viscous liquid manifestly different from either of the constituents. Further, we find that the change results as a consequence of formic acid protonation of the N centers of the S. invicta venom alkaloids. The resulting mixed‐cation ammonium formate milieu has properties consistent with its classification as a protic IL.  相似文献   
159.
Many details pertaining to the formation and interactions of protein aggregates associated with neurodegenerative diseases are invisible to conventional biophysical techniques. We recently introduced 15N dark‐state exchange saturation transfer (DEST) and 15N lifetime line‐broadening to study solution backbone dynamics and position‐specific binding probabilities for amyloid β (Aβ) monomers in exchange with large (2–80 MDa) protofibrillar Aβ aggregates. Here we use 13Cmethyl DEST and lifetime line‐broadening to probe the interactions and dynamics of methyl‐bearing side chains in the Aβ‐protofibril‐bound state. We show that all methyl groups of Aβ40 populate direct‐contact bound states with a very fast effective transverse relaxation rate, indicative of side‐chain‐mediated direct binding to the protofibril surface. The data are consistent with position‐specific enhancements of 13Cmethyl‐${R{{{\rm tethered}\hfill \atop 2\hfill}}}$ values in tethered states, providing further insights into the structural ensemble of the protofibril‐bound state.  相似文献   
160.
A reagentless strategy for template‐free patterning of uniformly inert surfaces is suggested. A layer of p‐hydroquinone (HQ) protected by the tert‐butyldimethylsilyl (TBDMS) group is electrografted onto glassy carbon electrodes. Chemoselective activation is performed through electrochemically controlled cleavage of the TBDMS group, which yields the redox‐active surface‐confined quinone moieties. The latter are shown to undergo electrochemically induced Michael addition, which serves for subsequent functionalization of the electrode surface. Patterning of the TBDMS–quinone‐modified surface is accomplished by using selective localized cleavage of the protecting group. State‐of‐the‐art direct‐mode scanning electrochemical microscopy (SECM) patterning fails to yield the anticipated interfacial reaction; however, the electrochemical scanning droplet cell (SDC) is capable of conducting the localized chemoselective reaction. In a small area, dictated by the dimensions of the droplet, electrochemically induced cleavage of the protecting group can be performed locally to give rise to arrays of active quinone spots. Upon deprotection, the redox signals, attributed to the hydroquinone/benzoquinone couple, provide the first direct evidence for chemoselective electrochemical patterning of sensitive functionalities. Subsequent SECM studies of the resulting modified areas demonstrate spatial control of the proposed patterning technique.  相似文献   
[首页] « 上一页 [11] [12] [13] [14] [15] 16 [17] [18] [19] [20] [21] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号