首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   655篇
  免费   26篇
  国内免费   4篇
化学   426篇
晶体学   3篇
力学   10篇
数学   112篇
物理学   134篇
  2023年   9篇
  2022年   8篇
  2021年   8篇
  2020年   13篇
  2019年   15篇
  2018年   12篇
  2017年   11篇
  2016年   25篇
  2015年   16篇
  2014年   18篇
  2013年   46篇
  2012年   38篇
  2011年   51篇
  2010年   28篇
  2009年   33篇
  2008年   39篇
  2007年   37篇
  2006年   36篇
  2005年   34篇
  2004年   37篇
  2003年   18篇
  2002年   22篇
  2001年   7篇
  2000年   7篇
  1999年   14篇
  1998年   8篇
  1997年   6篇
  1996年   8篇
  1995年   7篇
  1994年   11篇
  1993年   6篇
  1992年   5篇
  1991年   6篇
  1990年   6篇
  1988年   2篇
  1986年   1篇
  1985年   4篇
  1984年   7篇
  1983年   7篇
  1982年   6篇
  1981年   1篇
  1980年   3篇
  1979年   1篇
  1978年   2篇
  1976年   1篇
  1973年   3篇
  1911年   2篇
排序方式: 共有685条查询结果,搜索用时 31 毫秒
601.
We have investigated the light dose and time dependency of photodynamic cell membrane damage using electrophysiological methods. This study controls the level of cell membrane damage by precisely administration of the light dose. The photosensitizer used was 5′,5″-bis(aminomethyl)-2,2′:5′,2″-terthiophene dihydrochloride (BAT). A confocal laser scanning microscope was used to provide rapid light activation (<1 s) and the subsequent membrane damage was monitored using standard patch clamp techniques. In the presence of 49 μM BAT, light levels less than 0.94 J/cm2 led to a reversible depolarization (20 mV) and reduction of resistance (10%) within 3 s of illumination. Higher intensities of illumination (1.57 J/cm2) caused a complete and irreversible loss of membrane potential and cell membrane resistance within 8 s of illumination. The threshold dose of light required to induce cell death by illumination in the presence of BAT was increased in the presence of the antioxidant Trolox-C.  相似文献   
602.
Infrared multiple-photon dissociation spectroscopy is effected on the K(+) tagged aromatic amino acids tyrosine and phenylalanine, as well as the K(+) tagged peptides bradykinin fragment 1-5 and [Leu]-enkephalin. The fingerprint (800-1800 cm(-1)) infrared spectra of these species are compared to density-functional theory (DFT) calculated spectra to determine whether the complex is in the charge solvation (CS) or salt bridge (SB) (i.e. zwitterionic) configuration. For the aromatic amino acids the CS structure is favored and the tridentate N/O/ring structure is found to be the preferred binding geometry for K(+). The experimental and theoretical evidence for bradykinin fragment 1-5 tagged with K(+) suggests that the SB structure is favored; the calculations indicate a head-to-tail looped structure stabilized by a salt bridge between the protonated guanidine group and the deprotonated C-terminus, which allows K(+) to sit in a binding pocket with five C=O electrostatic interactions. For K(+) tagged [Leu]-enkephalin the spectroscopic evidence is not as clear. While the calculations clearly favor a CS structure and the observation of a weak carboxylic acid C=O stretching band in the infrared spectrum matches this finding, the prominence of a band at 1600 cm(-1) renders the analysis more ambiguous, and hence the presence of some salt bridge ions cannot be excluded. Another striking feature in the [Leu]-enkephalin spectrum is the high infrared activity of the tyrosine side-chain modes, which can be clearly identified from comparison to the [Tyr + K](+) experimental spectrum, but which is not reproduced by the DFT calculations.  相似文献   
603.
Most of the porphyrin-recognition chemistry we have investigated previously has centred on kinetically labile metal-ligand interactions, such as Z-N and Ru-N. Our interest in the broader scope of molecular recognition required a metal with the ability to specifically recognise non-nitrogen-based ligands, with a significantly different binding interaction to distinguish it from nitrogen-based analogues. In this report we describe interactions of Sn(IV) porphyrins that bind oxygen-based ligands and for which the Sn(IV)bond;O bond is in slow exchange on the NMR timescale. A series of carboxylate complexes is employed to highlight the structural/geometric features of porphyrin monomers and cyclic oligomers. Where more than one porphyrin unit is present in a molecular scaffold, we report the effect of carboxylate binding on the complex when the two porphyrins contain different metals (typically Sn(IV) and Zn(II)). The unexpected spectroscopic and structural properties of the Sn(2)(9-anthroic acid)porphyrin dimer are also reported.  相似文献   
604.
A statistical model of the dielectric polarization of ionic water-in-oil microemulsions is proposed. The model makes it possible to describe the effect of temperature and dispersed phase content on the static dielectric permittivity behavior of the microemulsions at a region far below percolation. With the help of this model, the microemulsions formed with the surfactant, sodium bis(2-ethylhexyl) sulfosuccinate (AOT), have been analyzed. The studied systems are considered to consist of nanometer-sized spherical non-interacting water droplets of equal size with negatively charged head groups , staying at the interface and positive counterions Na+, distributed in the electrical diffuse double layer of the droplet interior. It can be conjectured that two different mechanisms, that provide an increase of the static dielectric permittivity as a function of temperature, may take place. These may be attributed either to the aggregation of droplets or the temperature growth of polarizability of non-interacting and therefore non-aggregating droplets dispersed in oil. The results support the hypothesis that the experimental temperature behavior of dielectric polarization far below the percolation region is only due to the polarization of a single droplet and not to an aggregation. The droplet polarizability is proportional to the fluctuation mean-square dipole moment of a droplet. It is shown that this mean-square dipole moment and the corresponding value of the dielectric increment, depend upon the equilibrium distribution of counterions within a diffuse double layer. The density distribution of ions is determined by the degree of the dissociation of the ionic surfactant. The dissociation of the ionic surfactant in the system has been analyzed numerically. The relationship between the constant of dissociation and the experimental dielectric permittivity has been ascertained.  相似文献   
605.
606.
[reaction: see text] Oxidation of tetradecanoic and hexadecanoic acids by cytochrome P450(BioI) (CYP107H1) produces mainly the 11-, 12-, and 13-hydroxy C(14) fatty acids and the 11- to 15-hydroxy C(16) fatty acids, respectively. In contrast to previous reports, terminal hydroxylation is not observed. The enantiospecificity of fatty acid hydroxylation by P450(BioI) was also determined, and the enzyme was shown to be moderately selective for production of the (R)-alcohols.  相似文献   
607.
Numerous developments in optical biomedical imaging research utilizing gold nanostructures as contrast agents have advanced beyond basic research towards demonstrating potential as diagnostic tools; some of which are translating into clinical applications. Recent advances in optics, lasers and detection instrumentation along with the extensive, yet developing, knowledge-base in tailoring the optical properties of gold nanostructures has significantly improved the prospect of near-infrared (NIR) optical detection technologies. Of particular interest are optical coherence tomography (OCT), photoacoustic imaging (PAI), multispectral optoacoustic tomography (MSOT), Raman spectroscopy (RS) and surface enhanced spatially offset Raman spectroscopy (SESORS), due to their respective advancements. Here we discuss recent technological developments, as well as provide a prediction of their potential to impact on clinical diagnostics. A brief summary of each techniques'' capability to distinguish abnormal (disease sites) from normal tissues, using endogenous signals alone is presented. We then elaborate on the use of exogenous gold nanostructures as contrast agents providing enhanced performance in the above-mentioned techniques. Finally, we consider the potential of these approaches to further catalyse advances in pre-clinical and clinical optical diagnostic technologies.

Optical biomedical imaging research utilising gold nanostructures as contrast agents has advanced beyond basic science, demonstrating potential in various optical diagnostic tools; some of which are currently translating into clinical applications.  相似文献   
608.
Solvation properties of the hydrated excess proton are studied in a hydrophilic pocket of Nafion 117 through a series of molecular dynamics simulations. The multistate empirical valence bond (MS-EVB) methodology, which enables the delocalization of the excess proton through the Grotthuss hopping mechanism, was employed for one of the excess protons in the simulation cell. Simulations were performed such that "classical" nondissociable hydronium cations and a single excess proton treated with the MS-EVB methodology were at a concentration ratio of 39:1. Two degrees of hydration of the Nafion polymer electrolyte membrane were simulated, each displaying the same marked difference between the solvation structures of the classical versus MS-EVB treated (Grotthuss shuttling) excess proton species. These differences are attributed to the solvent dynamics needed to transfer the cation between the solvent separated and contact pair positions about the sulfonic acid counterion. The results demonstrate that it is generally impossible to describe the low pH conditions in the hydrophilic domains of Nafion without the explicit treatment of Grotthuss delocalization in the underlying molecular dynamics model for the excess protons.  相似文献   
609.
A series of CN-bridged trinuclear Ru complexes of the general structure [RuL2(μ-(CN)Ru(CN)L2′)2] where L is 2,2′-bipyridine-4,4′-dicarboxylic acid and L′ is 2,2′-bipyridine ( 1 )2,2′-bipyridine-4,4′-dicarboxylic acid ( 2 ), 4,4′-dimethyl-2,2′-bipyridine ( 3 ), 4,4′-diphenyl-2,2′-bipyridine ( 4 ), 1,10-phenanthroline ( 5 ), and bathophenanthrolinedisulfonic acid ( 6 ) have been synthesized, and their spectral and electrochemical properties investigated. The two carboxylic functions on the 2,2′-bipyridine ligand L serve as interlocking groups through which the dye is attached at the surface of TiO2 films having a specific surface texture. The role of these interlocking groups is to provide strong electronic coupling between the π* orbital of the 2,2′-bipyridine and the 3d-wave-function manifold of the conduction band of the TiO2, allowing the charge injection to proceed at quantum yields close to 100 %. The charge injection and recombination dynamics have been studied with colloidal TiO2, using laser photolysis technique in conjunction with time-resolved optical spectroscopy. Photocurrent action spectra obtained from photo-electrochemical experiments with these trinuclear complexes cover a very broad range in the visible, making them attractive candidates for solar light harvesting. Monochromatic incident photon-to-current conversion efficiencies are strikingly high exceeding 80% in some cases. Performance characteristics of regenerative cells operating with these trinuclear complexes and ethanolic triiodide/iodide redox electrolyte have been investigated. Optimal results were obtained with complex 1 which gave a fill factor of 75 % and a power conversion efficiency of 11.3% at 520 nm.  相似文献   
610.
Design and characterization of programmable DNA nanotubes   总被引:4,自引:0,他引:4  
DNA self-assembly provides a programmable bottom-up approach for the synthesis of complex structures from nanoscale components. Although nanotubes are a fundamental form encountered in tile-based DNA self-assembly, the factors governing tube structure remain poorly understood. Here we report and characterize a new type of nanotube made from DNA double-crossover molecules (DAE-E tiles). Unmodified tubes range from 7 to 20 nm in diameter (4 to 10 tiles in circumference), grow as long as 50 microm with a persistence length of approximately 4 microm, and can be programmed to display a variety of patterns. A survey of modifications (1) confirms the importance of sticky-end stacking, (2) confirms the identity of the inside and outside faces of the tubes, and (3) identifies features of the tiles that profoundly affect the size and morphology of the tubes. Supported by these results, nanotube structure is explained by a simple model based on the geometry and energetics of B-form DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号