Measurement ofT2G, the Gaussian component of the spin-echo envelope of planar Cu nuclei in high-temperature superconductors, gives important information about the real part of the Cu electron spin susceptibility. In the traditional picture of the planar Cu echo decay, the internuclear coupling is assumed to remain static with respect to spin–lattice relaxation and mutual exchange fluctuations. In some circumstances, however, this assumption breaks down. We calculate the internuclear corrections arising from spin–lattice relaxation to the conventional theory ofT2Gand show thatT2Gcan be easily corrected for these effects. We argue that mutual exchanges due to the perpendicular indirect couplings are suppressed in these materials. For YBa2Cu4O8, we find a correction on the order of 10% inT2Gand using the corrected values we find that the isotope ratio63T2G/65T2Gagrees with theory. 相似文献
An experimental investigation of the size and volumetric concentration of acoustic cavitation bubbles is presented. The cavitation bubble cloud is generated at 20 kHz by an immersed horn in a rectangular glass vessel containing bi-distilled water. Two laser techniques, laser diffraction and phase Doppler interferometry, are implemented and compared. These two techniques are based on different measuring principles. The laser diffraction technique analyses the light pattern scattered by the bubbles along a line-of-sight of the experimental vessel (spatial average). The phase Doppler technique is based on the analysis of the light scattered from single bubbles passing through a set of interference fringes formed by the intersection of two laser beams: bubble size and velocity distributions are extracted from a great number of single-bubble events (local and temporal average) but only size distributions are discussed here. Difficulties arising in the application of the laser diffraction technique are discussed: in particular, the fact that the acoustic wave disturbs the light scattering patterns even when there are no cavitation bubbles along the measurement volume. As a consequence, a procedure has been developed to correct the raw data in order to get a significant bubble size distribution. After this data treatment has been applied the results from the two measurement techniques show good agreement. Under the emitter surface, the Sauter mean diameter D(3, 2) is approximately 10 microm by phase Doppler measurement and 7.5 microm by laser diffraction measurement at 179 W. Note that the mean measured diameter is much smaller than the resonance diameter predicted by the linear theory (about 280 microm). The influence of the acoustic power is investigated. Axial and radial profiles of mean bubble diameters and void fraction are also presented. 相似文献
Nerve gas mimic binding with Rhodamine B ethylenediamine (1) was studied in organic media. Binding of the nerve gas mimic, diethyl chlorophosphate (DCP), with the probe generated a non-fluorescent intermediate and a fluorescent product. Fluorescent and non-fluorescent products generated were identified using mass spectrometry and X-ray crystallography. Time-dependent density functional theory calculations were also used to investigate the electronic structure of the fluorescent probe in the ground and lowest lying π?→?π* singlet excited state. Though good agreement between theory and experiment can be obtained for the intense peak in the experimental spectrum using non-hybrid functionals, care must be taken when modelling these complexes due to the appearance of an n?→?π* transition that is too low in energy and appears to fall in the shoulders of the π?→?π* transitions.
The mutual neutralization of anions with Ar+ has been studied by variable electron and neutral density attachment mass spectrometry. Evidence of a previously unobserved plasma loss process, electron-catalyzed mutual neutralization (ECMN), e.g., SF6-+Ar+ + e-→neutrals + e-, is reported. Results for 10 species suggest that ECMN occurs generally and significantly affects the total ion-loss rate in plasmas with electron densities exceeding 10(10) cm-3. ECMN is discussed in the context of other known three-body plasma processes, the mechanisms for which appear insufficient to explain the observed effect. A mechanism for ECMN involving an incident electron facilitating energy transfer to the internal modes of the anion is proposed. 相似文献
We investigated a far-field superlens operating at mid-infrared wavelength that allows resolving subwavelength features in the far-field. By utilizing evanescent enhancement provided by surface plasmon excitation of silver nanorods and Moiré effect, we numerically demonstrated that subwavelength information of an object can be converted to propagating information. This information can then be captured by conventional optical components. A simple image reconstruction algorithm can restore the subwavelength object. A sub-diffraction-limited resolution of 2.5 μm at 6-μm wavelength is demonstrated. 相似文献
Fast atoms with energies from 300 eV up to 1.7 keV are scattered under a grazing angle of incidence from a clean and flat Ni(1 1 0) surface. For scattering under ”axial surface channeling” conditions, we observe – as reported recently for insulator and semiconductor surfaces – defined diffraction patterns in the angular intensity distributions for scattered fast 3He and 4He atoms. We have investigated the domain of scattering conditions where decoherence phenomena are sufficiently small in order to observe for metal targets quantum scattering of fast atomic projectiles. As a consequence, fast atom diffraction appears to be a general technique with a wide range of applicability in surface science. 相似文献
Pharmaceutical products are often present in wastewater treatment effluents, rivers, lakes and, more rarely, in groundwater. The advanced oxidation methods, like ultrasound, find a promising future in the area of wastewater treatment. The aim of this paper is to evaluate the influence of several parameters of the ultrasound process on the degradation of paracetamol, a widely used non-steroidal anti-inflammatory recalcitrant drug found in water and levodopa, the most frequently prescribed drug for the treatment of Parkinson disease. Experiments were carried out at 574, 860 and 1134 kHz of ultrasonic frequency with horn-type sonicator and actual power values of 9, 17, 22 and 32 W at 20 °C. Initial concentrations of 25, 50, 100 and 150 mg L?1 of both products were used. Treatment efficiency was assessed following changes in pharmaceuticals concentration and chemical oxygen demand.The sonochemical degradation of both products follows a pseudo-first-order reaction kinetics. Complete removal of pharmaceuticals was achieved in some cases but some dissolved organic carbon remains in solution showing that long lived intermediates were recalcitrant to ultrasound irradiation. Pollutants conversion and COD removal were found to decrease with increasing the initial solute concentration and decreasing power. The best results were obtained with 574 kHz frequency. Investigations using 1-butanol as radical scavenger and H2O2 as promoter revealed that pollutants degradation proceeds principally through radical reactions, although some differences were observed between both molecules. Addition of H2O2 had a positive effect on degradation rate, but the optimum concentration of hydrogen peroxide depends on the pollutant. 相似文献