首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3660篇
  免费   189篇
  国内免费   21篇
化学   2753篇
晶体学   35篇
力学   99篇
数学   489篇
物理学   494篇
  2023年   27篇
  2022年   38篇
  2021年   68篇
  2020年   90篇
  2019年   91篇
  2018年   58篇
  2017年   60篇
  2016年   131篇
  2015年   84篇
  2014年   121篇
  2013年   168篇
  2012年   254篇
  2011年   318篇
  2010年   116篇
  2009年   97篇
  2008年   243篇
  2007年   215篇
  2006年   227篇
  2005年   201篇
  2004年   157篇
  2003年   132篇
  2002年   123篇
  2001年   39篇
  2000年   33篇
  1999年   23篇
  1998年   29篇
  1997年   29篇
  1996年   30篇
  1995年   39篇
  1994年   26篇
  1993年   36篇
  1992年   34篇
  1991年   35篇
  1990年   17篇
  1989年   22篇
  1988年   22篇
  1987年   23篇
  1985年   35篇
  1984年   34篇
  1983年   23篇
  1982年   41篇
  1981年   30篇
  1980年   30篇
  1979年   24篇
  1978年   32篇
  1977年   29篇
  1976年   24篇
  1975年   20篇
  1974年   13篇
  1973年   15篇
排序方式: 共有3870条查询结果,搜索用时 203 毫秒
211.
Covalent labeling along with mass spectrometry is finding more use as a means of studying the higher order structure of proteins and protein complexes. Diethylpyrocarbonate (DEPC) is an increasingly used reagent for these labeling experiments because it is capable of modifying multiple residues at the same time. Pinpointing DEPC-labeled sites on proteins is typically needed to obtain more resolved structural information, and tandem mass spectrometry after protein proteolysis is often used for this purpose. In this work, we demonstrate that in certain instances, scrambling of the DEPC label from one residue to another can occur during collision-induced dissociation (CID) of labeled peptide ions, resulting in ambiguity in label site identity. From a preliminary study of over 30 labeled peptides, we find that scrambling occurs in about 25% of the peptides and most commonly occurs when histidine residues are labeled. Moreover, this scrambling appears to occur more readily under non-mobile proton conditions, meaning that low charge-state peptide ions are more prone to this reaction. For all peptides, we find that scrambling does not occur during electron transfer dissociation, which suggests that this dissociation technique is a safe alternative to CID for correct label site identification. Graphical Abstract
?  相似文献   
212.
Since the start of this millennium, remarkable progress in the binding and sensing of anions has been taking place, driven in part by discoveries in the use of hydrogen bonding, as well as the previously under‐exploited anion–π interactions and halogen bonding. However, anion supramolecular chemistry has developed substantially beyond anion recognition, and now encompasses a diverse range of disciplines. Dramatic advance has been made in the anion‐templated synthesis of macrocycles and interlocked molecular architectures, while the study of transmembrane anion transporters has flourished from almost nothing into a rapidly maturing field of research. The supramolecular chemistry of anions has also found real practical use in a variety of applications such as catalysis, ion extraction, and the use of anions as stimuli for responsive chemical systems.  相似文献   
213.
Atropisomeric biaryls carrying ortho‐hydroxymethyl and formyl groups were made enantioselectively by desymmetrisation of dialdehyde or diol substrates. The oxidation of the symmetrical diol substrates was achieved using a variant of galactose oxidase (GOase), and the reduction of the dialdehydes using a panel of ketoreductases. Either M or P enantiomers of the products could be formed, with absolute configurations assigned by time‐dependent DFT calculations of circular dichroism spectra. The differing selectivities observed with different biaryl structures offer an insight into the detailed structure of the active site of the GOase enzyme.  相似文献   
214.
The first total synthesis of the lipid mediator MaR1n?3 DPA ( 5 ) has been achieved in 12 % overall yield over 11 steps. The stereoselective preparation of 5 was based on a Pd‐catalyzed sp3–sp3 Negishi cross‐coupling reaction and a stereocontrolled Evans–Nagao acetate aldol reaction. LC‐MS/MS results with synthetic material matched the biologically produced 5 . This novel lipid mediator displayed potent pro‐resolving properties stimulating macrophage efferocytosis of apoptotic neutrophils.  相似文献   
215.
We demonstrate a simple bioconjugate polymer system that undergoes reversible self‐assembling into extended fibrous structures, reminiscent of those observed in living systems. It is comprised of green fluorescent protein (GFP) molecules linked into linear oligomeric strands through click step growth polymerization with dialkyne poly(ethylene oxide) (PEO). Confocal microscopy, atomic force microscopy, and dynamic light scattering revealed that such strands form high persistence length fibers, with lengths reaching tens of micrometers, and uniform, sub‐100 nm widths. We ascribe this remarkable and robust form of self‐assembly to the cooperativity arising from the known tendency of GFP molecules to dimerize through localized hydrophobic patches and from their covalent pre‐linking with flexible PEO. Dissipative particle dynamics simulations of a coarse‐grained model of the system revealed its tendency to form elongated fibrous aggregates, suggesting the general nature of this mode of self‐assembly.  相似文献   
216.
Phenylalanine ammonia lyases (PALs) belong to a family of 4‐methylideneimidazole‐5‐one (MIO) cofactor dependent enzymes which are responsible for the conversion of L ‐phenylalanine into trans‐cinnamic acid in eukaryotic and prokaryotic organisms. Under conditions of high ammonia concentration, this deamination reaction is reversible and hence there is considerable interest in the development of PALs as biocatalysts for the enantioselective synthesis of non‐natural amino acids. Herein the discovery of a previously unobserved competing MIO‐independent reaction pathway, which proceeds in a non‐stereoselective manner and results in the generation of both L ‐ and D ‐phenylalanine derivatives, is described. The mechanism of the MIO‐independent pathway is explored through isotopic‐labeling studies and mutagenesis of key active‐site residues. The results obtained are consistent with amino acid deamination occurring by a stepwise E1cB elimination mechanism.  相似文献   
217.
Many proteins exert their biological activities through small exposed surface regions called epitopes that are folded peptides of well‐defined three‐dimensional structures. Short synthetic peptide sequences corresponding to these bioactive protein surfaces do not form thermodynamically stable protein‐like structures in water. However, short peptides can be induced to fold into protein‐like bioactive conformations (strands, helices, turns) by cyclization, in conjunction with the use of other molecular constraints, that helps to fine‐tune three‐dimensional structure. Such constrained cyclic peptides can have protein‐like biological activities and potencies, enabling their uses as biological probes and leads to therapeutics, diagnostics and vaccines. This Review highlights examples of cyclic peptides that mimic three‐dimensional structures of strand, turn or helical segments of peptides and proteins, and identifies some additional restraints incorporated into natural product cyclic peptides and synthetic macrocyclic peptidomimetics that refine peptide structure and confer biological properties.  相似文献   
218.
The development of efficient catalytic methods to cleave the relatively unreactive C? O bonds of ethers remains an important challenge in catalysis. Building on our group’s recent work, we report the dehydroaryloxylation of aryl alkyl ethers using pincer iridium catalysts. This method represents a rare fully atom‐economical method for ether C? O bond cleavage.  相似文献   
219.
To establish the structure–catalytic property relationships of heterogeneous catalysts, a detailed characterization of the three‐dimensional (3D) distribution of active sites on a single catalyst is essential. Single‐particle catalysis of a modular multilayer catalytic platform that consists of a solid silica core, a mesoporous silica shell, and uniformly distributed Pt nanoparticles sandwiched in between these layers is presented. The first 3D high‐resolution super‐localization imaging of single fluorescent molecules produced at active sites on the core‐shell model nanocatalysts is demonstrated. The 3D mapping is aided by the well‐defined geometry and a correlation study in scanning electron microscopy and total internal reflection fluorescence and scattering microscopy. This approach can be generalized to study other nano‐ and mesoscale structures.  相似文献   
220.
Methane (CH \(_4\) ) adsorption has been widely studied, mainly in the context of natural gas purification. A much less prominent, but highly relevant application is the preconcentration of CH \(_4\) from ambient air. In this study, we compare six different commercial adsorbent materials with respect to their effectiveness for methane preconcentration: a macroporous polymeric resin (HayeSep D), multi-walled carbon nanotubes, two microporous metal-organic frameworks (HKUST-1 and ZIF-8), and two zeolites (5A and 13X). The most relevant properties, such as isosteric enthalpy of adsorption, specific surface area and the selectivity for CH \(_4\) adsorption over N \(_2\) were characterized by analyzing adsorption/desorption isotherms. Using these parameters, we discuss the tested adsorbents with respect to the most important properties and identify the most promising candidates. Furthermore we identify the experimental conditions that are expected to give the best results with respect to practical applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号