首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5252篇
  免费   183篇
  国内免费   35篇
化学   2986篇
晶体学   57篇
力学   195篇
数学   1256篇
物理学   976篇
  2023年   51篇
  2022年   146篇
  2021年   160篇
  2020年   146篇
  2019年   173篇
  2018年   174篇
  2017年   168篇
  2016年   231篇
  2015年   176篇
  2014年   245篇
  2013年   378篇
  2012年   359篇
  2011年   380篇
  2010年   203篇
  2009年   222篇
  2008年   261篇
  2007年   226篇
  2006年   180篇
  2005年   146篇
  2004年   141篇
  2003年   108篇
  2002年   95篇
  2001年   84篇
  2000年   60篇
  1999年   42篇
  1998年   33篇
  1997年   41篇
  1996年   57篇
  1995年   45篇
  1994年   40篇
  1993年   47篇
  1992年   40篇
  1991年   41篇
  1990年   37篇
  1989年   29篇
  1988年   33篇
  1987年   38篇
  1986年   41篇
  1985年   38篇
  1984年   31篇
  1983年   25篇
  1982年   36篇
  1981年   35篇
  1980年   28篇
  1979年   39篇
  1978年   29篇
  1977年   22篇
  1976年   25篇
  1975年   22篇
  1974年   14篇
排序方式: 共有5470条查询结果,搜索用时 9 毫秒
991.
A systematic analysis on sodium-silicate melt with various silica contents was carried out. The simulation revealed two diffusion mechanisms occurred in the melt: the bond-breaking and hopping between sites. The local structure was analyzed through T-simplexes. It was revealed that T-clusters have a non-spherical shape and represent the diffusion channel, in which Na atoms are dominant, but no any O atoms are located. The SiO2-poor melt acquires a long channel. In contrast, the SiO2-rich melt consists of unconnected short channels. The simulation also revealed the immobile and mobile regions which differ in local structure and constituent composition. We propose a new CL-function to characterizing the spatial distribution of different atom component. The spatial distribution of mobile and immobile atoms is found quite different. In particular, the immobile atoms are concentrated in high-density regions possessing very large density of immobile atoms. The spatial distribution of mobile atoms in contrast is more homogeneous.  相似文献   
992.
In this paper, the moment method in statistical mechanics has been employed to study the pressure effects on thermodynamic and mechanical properties of zinc-blende zinc telluride using many-body potential. We have derived the analytical expressions of the pressure-dependent lattice parameter, volume compression as well as mean-square displacement of zinc-blende type compound. Numerical calculations performed for ZnTe compound up to 12 GPa are found to be in good and reasonable agreement with available experimental data as well as with previous theoretical studies. These results have been used to evaluate the bulk modulus and its first pressure derivative of ZnTe. The present moment method has taken into account the quantum zero-point vibrations at low temperature and the higher-order anharmonic terms in the atomic displacements. This research shows the advantage of moment method on extensively studying thermo-mechanical properties of materials under high pressures.  相似文献   
993.
Thermodynamic properties, anharmonic effects and structural determination of fcc crystals have been studied based on the theoretical and experimental Debye–Waller factors presented in terms of cumulant expansion up to the third order, thermal expansion coefficient, X-ray absorption fine structure (XAFS) spectra and their Fourier transform magnitudes. The advances in these studies are performed by the further development of the anharmonic correlated Einstein model primary only for approximating three first XAFS cumulants into the method using that all the considered theoretical and experimental XAFS parameters have been provided based on only the calculated and measured second cumulants. The obtained cumulants describe the anharmonic effects in XAFS contributing to the accurate structural determination. Numerical results for Cu are found to be in good agreement with the experimental values extracted by using the present advanced method and with those obtained by the other measurements.  相似文献   
994.
Inverse problems in statistical physics are motivated by the challenges of ‘big data’ in different fields, in particular high-throughput experiments in biology. In inverse problems, the usual procedure of statistical physics needs to be reversed: Instead of calculating observables on the basis of model parameters, we seek to infer parameters of a model based on observations. In this review, we focus on the inverse Ising problem and closely related problems, namely how to infer the coupling strengths between spins given observed spin correlations, magnetizations, or other data. We review applications of the inverse Ising problem, including the reconstruction of neural connections, protein structure determination, and the inference of gene regulatory networks. For the inverse Ising problem in equilibrium, a number of controlled and uncontrolled approximate solutions have been developed in the statistical mechanics community. A particularly strong method, pseudolikelihood, stems from statistics. We also review the inverse Ising problem in the non-equilibrium case, where the model parameters must be reconstructed based on non-equilibrium statistics.  相似文献   
995.
In this paper, stress fields at the surface of the capping layer of self-assembled InAsP quantum wires grown on an InP (001) substrate have been determined from atomistic models using molecular dynamics and Stillinger-Weber potentials. To carry out these calculations, the quantum wire compositional distribution was extracted from previous works, where the As and P distributions were determined by electron energy loss spectroscopy and high-resolution aberration-corrected Z-contrast imaging. Preferential sites for the nucleation of wires on the surface of the capping layer were studied and compared with (i) previous simulations using finite element analysis to solve anisotropic elastic theory equations and (ii) experimentally measured locations of stacked wires. Preferential nucleation sites of stacked wires were determined by the maximum stress location at the MD model surface in good agreement with experimental results and those derived from finite element analysis. This indicates that MD simulations based on empirical potentials provide a suitable and flexible tool to study strain dependent atom processes.  相似文献   
996.
Cu2ZnSnS4 (CZTS) has an optical band gap of 1.4–1.5 eV, which is similar to that of Cu(In,Ga)Se2 (CIGS), and a high absorption coefficient (>104 cm−1) in the visible light region. In previous reports, CIGS thin-film solar cells have been shown to improve the performance of the device since the secondary phase is removed by Potassium cyanide (KCN) etching treatment. Therefore, in this study we applied a KCN etching treatment on CZTS and measured the effects. We confirmed the removal of Cu2−xS via Kelvin probe force microscopy (KPFM) and Raman scattering spectroscopy. The effects of the experiment indicate that we can define with precision the location of the secondary phases, and therefore the control of the secondary phases will be easier and more efficient. Such capabilities could improve the solar cell performance of CZTS thin-films.  相似文献   
997.
This paper presents a compact and low-power-based discrete-time chaotic oscillator based on a carbon nanotube field-effect transistor implemented using Wong and Deng's well-known model. The chaotic circuit is composed of a nonlinear circuit that creates an adjustable chaos map, two sample and hold cells for capture and delay functions, and a voltage shifter that works as a buffer and adjusts the output voltage for feedback. The operation of the chaotic circuit is verified with the SPICE software package, which uses a supply voltage of 0.9 V at a frequency of 20 kHz. The time series, frequency spectra, transitions in phase space, sensitivity with the initial condition diagrams, and bifurcation phenomena are presented. The main advantage of this circuit is that its chaotic signal can be generated while dissipating approximately 7.8 μW of power, making it suitable for embedded systems where many chaos-signal generators are required on a single chip.  相似文献   
998.
In combination with the theories of open system and quantum recovering measurement, we propose a quantum state transfer scheme using spin chains by performing two sequential operations: a projective measurement on the spins of ‘environment’ followed by suitably designed quantum recovering measurements on the spins of interest. The scheme allows perfect transfer of arbitrary multispin states through multiple parallel spin chains with finite probability. Our scheme is universal in the sense that it is state-independent and applicable to any model possessing spin–spin interactions. We also present possible methods to implement the required measurements taking into account the current experimental technologies. As applications, we consider two typical models for which the probabilities of perfect state transfer are found to be reasonably high at optimally chosen moments during the time evolution.  相似文献   
999.
An ultrasonic planar horn with a Bézier profile is developed. The first longitudinal displacement mode of the horn is exploited for high displacement amplification in order to reduce the penetration force required to enter and cut materials. The displacement amplification and stress distribution characteristics of the Bézier horn and the commonly used catenary horn are examined. The penetration force by the Bézier horn is nearly 75% of that by the catenary horn with a penetration speed of 0.25 mm/s during cutting a tissue stimulant. At a penetration speed of 0.5 mm/s, the penetration force by the Bézier horn is nearly 85% of that by the catenary horn for cutting a polymethylmethacrylate (PMMA) material. The decrease in the penetration force by the Bézier horn is attributed to the fact that the displacement amplification of the Bézier horn is 30% higher than that of the traditional catenary horn with the same length and end surface widths.  相似文献   
1000.
This paper presents a novel method used to manufacture stacks of multiple matching layers for 15 MHz piezoelectric ultrasonic transducers, using fabrication technology derived from the MEMS industry. The acoustic matching layers were made on a silicon wafer substrate using micromachining techniques, i.e., lithography and etch, to design silicon and polymer layers with the desired acoustic properties. Two matching layer configurations were tested: a double layer structure consisting of a silicon–polymer composite and polymer and a triple layer structure consisting of silicon, composite, and polymer. The composite is a biphase material of silicon and polymer in 2-2 connectivity. The matching layers were manufactured by anisotropic wet etch of a (1 1 0)-oriented Silicon-on-Insulator wafer. The wafer was etched by KOH 40 wt%, to form 83 μm deep and 4.5 mm long trenches that were subsequently filled with Spurr’s epoxy, which has acoustic impedance 2.4 MRayl. This resulted in a stack of three layers: The silicon substrate, a silicon–polymer composite intermediate layer, and a polymer layer on the top. The stacks were bonded to PZT disks to form acoustic transducers and the acoustic performance of the fabricated transducers was tested in a pulse-echo setup, where center frequency, −6 dB relative bandwidth and insertion loss were measured. The transducer with two matching layers was measured to have a relative bandwidth of 70%, two-way insertion loss 18.4 dB and pulse length 196 ns. The transducers with three matching layers had fractional bandwidths from 90% to 93%, two-way insertion loss ranging from 18.3 to 25.4 dB, and pulse lengths 326 and 446 ns. The long pulse lengths of the transducers with three matching layers were attributed to ripple in the passband.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号