首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3499篇
  免费   546篇
  国内免费   351篇
化学   2581篇
晶体学   42篇
力学   141篇
综合类   3篇
数学   390篇
物理学   1239篇
  2024年   6篇
  2023年   67篇
  2022年   110篇
  2021年   149篇
  2020年   141篇
  2019年   127篇
  2018年   117篇
  2017年   109篇
  2016年   159篇
  2015年   176篇
  2014年   194篇
  2013年   278篇
  2012年   353篇
  2011年   338篇
  2010年   196篇
  2009年   242篇
  2008年   192篇
  2007年   204篇
  2006年   184篇
  2005年   126篇
  2004年   122篇
  2003年   84篇
  2002年   77篇
  2001年   48篇
  2000年   58篇
  1999年   67篇
  1998年   46篇
  1997年   38篇
  1996年   60篇
  1995年   27篇
  1994年   29篇
  1993年   34篇
  1992年   29篇
  1991年   25篇
  1990年   26篇
  1989年   24篇
  1988年   13篇
  1987年   20篇
  1986年   12篇
  1985年   14篇
  1984年   21篇
  1983年   8篇
  1982年   6篇
  1981年   3篇
  1978年   4篇
  1977年   4篇
  1976年   6篇
  1975年   4篇
  1974年   3篇
  1970年   3篇
排序方式: 共有4396条查询结果,搜索用时 0 毫秒
81.
Osmotic energy, obtained through different concentrations of salt solutions, is recognized as a form of a sustainable energy source. In the past years, membranes derived from asymmetric aromatic compounds have attracted attention because of their low cost and high performance in osmotic energy conversion. The membrane formation process, charging state, functional groups, membrane thickness, and the ion-exchange capacity of the membrane could affect the power generation performance. Among asymmetric membranes, a bipolar membrane could largely promote the ion transport. Here, two polymers with the same poly(ether sulfone) main chain but opposite charges were synthesized to prepare bipolar membranes by a nonsolvent-induced phase separation (NIPS) and spin-coating (SC) method. The maximum power density of the bipolar membrane reaches about 6.2 W m−2 under a 50-fold salinity gradient, and this result can serve as a reference for the design of bipolar membranes for osmotic energy conversion systems.  相似文献   
82.
Metal-reinforced sulfonic-acid-modified zirconia catalysts were successfully prepared and used to remove trace olefins from aromatics in a fixed-bed reactor. Catalysts were characterized by ICP-OES, N2 adsorption–desorption, X-ray diffraction, thermogravimetric analysis (TGA), and pyridine-FTIR spectroscopy. Different metals and calcination temperatures had great influence on the catalytic activity. Alumina-reinforced sulfated zirconia exhibited outstanding catalytic performance, stable regeneration activity, and giant surface area, and are promising in industrial catalysis. TGA showed that the decomposition of methyl could be attributed to Brønsted acid sites, and pyridine-FTIR spectroscopy proved the weak Brønsted sites on these synthesized metal-reinforced sulfated zirconia. Also, a relation between the reaction rate and weak Brønsted acid density is proposed.  相似文献   
83.
Polycyclic aromatic hydrocarbons with hexagons/pentagons or hexagons/heptagons have been intensively investigated in recent years, but those with simultaneous presence of hexagons, pentagons and heptagons remain rare. In this paper, we report dicyclohepta[ijkl,uvwx]rubicene ( DHR ), a non-benzenoid isomer of dibenzo[bc,kl]coronene with two pentagons and two heptagons. We developed an efficient and scalable synthetic method for DHR by using Scholl reaction and dehydrogenation. Crystal structure of DHR shows that the benzenoid rings, two pentagons and two heptagons are coplanar. The bond lengths analysis and the ICSS(1)zz and LOL-π calculations indicate that the incorporation of two formal azulene moieties has an effect on the conjugated structure. The π-electrons of benzenoid and pentagon rings are more delocalized. Cyclic voltammetry studies indicate that DHR shows multiple oxidation and reduction potentials. Interestingly, DHR exhibits unusual S0 to S2 absorption and abnormal anti-Kasha S2 to S0 emission. Moreover, crystals of DHR exhibit semiconducting behaviour with hole mobility up to 0.082 cm2 V−1 s−1.  相似文献   
84.
The coordination of 10-electron diatomic ligands (BF, CO N2) to iron complexes Fe(CO)2(CNArTripp2)2 [ArTripp2=2,6-(2,4,6-(iso-propyl)3C6H2)2C6H3] have been realized in experiments very recently (Science, 2019 , 363, 1203–1205). Herein, the stability, electronic structures, and bonding properties of (E1E2)Fe-(CO)2(CNArTripp2)2 (E1E2=BF, CO, N2, CN, NO+) were studied using density functional (DFT) calculations. The ground state of all those molecules is singlet and the calculated geometries are in excellent agreement with the experimental values. The natural bond orbital analysis revealed that Fe is negatively charged while E1 possesses positive charges. By employing the energy decomposition analysis, the bonding nature of the E2E1–Fe(CO)2(CNArTripp2)2 bond was disclosed to be the classic dative bond E2E1→Fe(CO)2(CNArTripp2)2 rather than the electron-sharing double bond. More interestingly, the bonding strength between BF and Fe(CO)2(CNArTripp2)2 is much stronger than that between CO (or N2) and Fe(CO)2(CNArTripp2)2, which is ascribed to the better σ-donation and π back-donations. However, the orbital interactions in CN→Fe(CO)2(CNArTripp2)2 and NO+→Fe(CO)2(CNArTripp2)2 mainly come from σ-donation and π back-donation, respectively. The different contributions from σ donation and π donation for different ligands can be well explained by using the energy levels of E1E2 and Fe(CO)2(CNArTripp2)2 fragments.  相似文献   
85.
Chiral 1,2‐bimetallic reagents are useful motifs in synthetic chemistry. Although syn‐1,2‐bimetallic compounds can be prepared by alkene dimetallation, anti‐1,2‐bimetallics are still rare. The stereospecific 1,2‐metallate shift that occurs during conjunctive cross‐coupling is shown to enable a practical and modular approach to the catalytic synthesis of enantioenriched anti‐1,2‐borosilanes. In addition to reaction development, the synthetic utility of anti‐1,2‐borosilanes was investigated, including applications to the synthesis of anti‐1,2‐diols and anti‐1,2‐amino alcohols  相似文献   
86.
Fused deposition molding (FDM) is one of the most widely used three‐dimensional (3D) printing technologies. This paper explores the influence of the forming angle on the tensile properties of FDM specimens. Orthogonal layering details were studied through experiments, theory, and finite element simulations. The stiffness and strength of the specimens were analyzed using the classical laminated plate theory and the Tsai–Wu failure criterion. The experimental process was simulated using finite element simulations. Results show that it is feasible to predict the stiffness and strength of FDM specimens using classical laminated plate theory and the Tsai–Wu failure criterion. A molding angle of 45° leads to specimens with maximized tensile properties. Numerical simulations show that changing the molding angle changes the internal stress and deformation fields inside samples, leading to FDM samples with different mechanical properties due to the orthogonal layers at different molding angles.  相似文献   
87.
A novel fluorinated chain extender, (1‐(ethyl(2‐hydroxyethyl)amino)‐3‐ ((3,3,4,4,5,5,6,6,7,7,8,8,8‐tridecafluorooctyl)oxy)propan‐2‐ol) (FPO), was synthesized and characterized by nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), and elemental analysis. Poly (ether urethane)s containing various amounts of the chain extender with fluorinated side chains (FPUs) were prepared by isophorone diisocyanate (IPDI), polytetra‐methylene‐ether‐glycol (PTMG), 3‐aminopropyltriethoxysilane (KH‐550), and 1,4‐butandiol (BDO). Films of FPUs were investigated by water absorption, contact angle, pencil hardness, adhesive force, and thermal analysis. Coating FPUs on micro‐nano concave‐convex structure plate realizes superhydrophobic performance. Scanning electron microscope (SEM) and atomic force microscopy (AFM) demonstrated that there is a lot of irregular concave‐convex structure, which forms a typical air cushion model. X‐ray photoelectron spectroscopy (XPS) analysis showed that surface fluorine content is 165% more than that of film average fluorine content. The superhydrophobic plate with 10% or higher F‐containing FPUs coating is of outstanding chemical corrosion resistance, excellent solvent resistance, and wear resistance.  相似文献   
88.
A new type of catalyst for the hydrosilylation of unsaturated monomers with dichloromethylsilane (DCMS) was prepared, which consisted of thiolmethylene-substituted styrene–divinyl benzene copolymer and platinum. When using DCMS as a hydrosilylation agent, these catalysts showed a high activity in the hydrosilylation of vinyl and acetylene monomers as styrene, alkyl vinyl silanes, acetylene, phenyl acetylene, butyl acrylate. The activities of catalysts were not significantly reduced even after 20 reuse cycles.  相似文献   
89.
A cationic terminal iminoborane [Mes*N Created by potrace 1.16, written by Peter Selinger 2001-2019 B ← IPr2Me2][AlBr4] (3+[AlBr4]) (Mes* = 2,4,6-tri-tert-butylphenyl and IPr2Me2 = 1,3-diisopropyl-4,5-dimethylimidazol-2-ylidene) has been synthesized and characterized. The employment of an aryl group and N-heterocyclic carbene (NHC) ligand enables 3+[AlBr4] to exhibit both B-centered Lewis acidity and BN multiple bond reactivities, thus allowing for the construction of tri-coordinate boron cations 5+–12+. More importantly, initial reactions involving coordination, addition, and [2 + 3] cycloadditions have been observed for the cationic iminoborane, demonstrating the potential to build numerous organoboron species via several synthetic routes.

An NHC-stabilized aryliminoboryl cation exhibits both boron-centered Lewis acidity and multiple bond reactivity and could be utilized as an effective synthon for unusual cationic boron species.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号