首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   398篇
  免费   14篇
化学   265篇
晶体学   2篇
力学   7篇
数学   70篇
物理学   68篇
  2022年   5篇
  2021年   9篇
  2020年   7篇
  2019年   8篇
  2018年   5篇
  2017年   10篇
  2016年   8篇
  2015年   3篇
  2014年   13篇
  2013年   18篇
  2012年   20篇
  2011年   19篇
  2010年   12篇
  2009年   8篇
  2008年   16篇
  2007年   14篇
  2006年   16篇
  2005年   7篇
  2004年   5篇
  2003年   14篇
  2002年   13篇
  2001年   10篇
  2000年   10篇
  1999年   6篇
  1998年   6篇
  1997年   6篇
  1996年   5篇
  1995年   7篇
  1994年   7篇
  1993年   10篇
  1992年   4篇
  1985年   3篇
  1984年   3篇
  1983年   8篇
  1982年   2篇
  1981年   4篇
  1980年   8篇
  1979年   7篇
  1978年   5篇
  1977年   9篇
  1976年   8篇
  1975年   5篇
  1974年   7篇
  1973年   4篇
  1972年   2篇
  1970年   6篇
  1967年   3篇
  1916年   2篇
  1880年   2篇
  1873年   2篇
排序方式: 共有412条查询结果,搜索用时 187 毫秒
101.
Investigations on Bis(methylsulfonyl)-amine (Dimesylamine). III. Onium Salts of Dimesylamine Thirty-five salts of the strong acid HN(SO2Me)2 containing onium cations are reported. These include higher quaternary ammonium salts which show excellent solubility in solvents of low polarity, thus being particularly useful for preparing solutions of “naked” (MeSO2)2N? or corresponding ion-pairs. Pyrolysis of the quaternary ammonium salts at temperatures of 200—250°C produces tertiary amines and N-alkyl-dimesylamines by (N → N′)-alkyl transfer. Alkene formation is not observed.  相似文献   
102.
Polysulfonyl Amines. XL. Preparation of Silver(I) Disulfonylamide Acetonitrile Complexes. Characterization of Tetraacetonitrilesilver(I) bis(dimesylamido)argentate(I) and (1,1,3,3-Tetraoxo-1,3,2-benzodithiazolido)acetonitrilesilver(I) by X-Ray Diffractometry and Thermal Analysis The following silver(I) disulfonylamides were prepared for the first time or by improved procedures: AgN(SO2CH3)2 ( 2a ); AgN(SO2C6H4-4-X)2 with X = F ( 2b ), Cl ( 2c ), Br ( 2d ), CH3 ( 2e ); silver(I) 1,2-benzenedisulfonimide AgN(SO2)2C6H4 ( 2f ). With acetonitrile, the salts 2a to 2e form (1/2) complexes AgN(SO2R)· 2 CH3CN ( 4a to 4e ), whereas 2f gives the (1/1) complex AgN(SO2)2C6H · CH3CN ( 4f ). The crystallographic data (at - 95°C) for the title compounds 4a and 4f are: 4a , space group C2/c, a = 1 967.6(4), b = 562.2(1), c = 2 353.0(5) pm, β = 102.21(2)°, V = 2.5440 nm3, Z = 4, Dx = 1.891 Mg m?3; 4f , space group P21/m, a = 741.5(3), b = 980.4(4), c = 756.6(3) pm, β = 99.28(2)°, V = 0.5428 nm3, Z = 2, Dx = 2.246 Mg m?3. 4a forms an ionic crystal [Ag(NCCH3)4][Ag{N(SO2CH3)2}2]? with a tetrahedrally coordinated silver atom (lying on a twofold axis) in the cation (225.3/225.7 pm for the two independent Ag? N distances, N? Ag? N 106.2—114.5°) and a linear-dicoordinated silver atom in the centrosymmetric anion (Ag? N 213.9 pm, two intraionic secondary Ag…O contacts 303.4 pm). 4f consists of uncharged molecules [C6H4(SO2)2N1AgN2CCH3] with crystallographic mirror symmetry (Ag? N1 218.8, Ag? N2 216.1 pm, N1? Ag? N2 174.3°), associated into strands by intermolecular secondary silver-oxygen contacts (Ag…O 273.8 pm, O…Ag…O 175.6, N? Ag…O 91.9/88.2°). The thermochemical behaviour of 4f was investigated using thermogravimetry, differential scanning calorimetry (DSC), time- and temperature-resolved X-ray diffractometry (TXRD), and solution calorimetry. The desolvation process occurs in the temperature range from 60 to 200°C and appears to be complex, although no crystalline intermediate could be detected. The desolvation enthalpy at 298 K was found to be + 26.8(4) kJ mol?1. 4a is desolvated in two steps at - 15 to 60°C and 60 to 95°C (DSC), suggesting the formation of AgN(SO2CH3) · CH3CN as an intermediate.  相似文献   
103.
The mass spectrometric fragmentation of a series of diols having the general formula HO? (CH2)n? OH with n = 2-11 has been studied. Extensive labelling of n-butane-1,4 diol and n-hexane-1,6 diol with deuterium allows fragmentation modes to be proposed. The labelling reveals that intramolecular exchange of H atoms often precedes the fragmentation and becomes more important when the length of the chain increases.  相似文献   
104.
Polysulfonylamines. CII. New Coordination Compounds Derived from Triorganyltin(IV) Dimesylamides and Uncharged Ligands: Mononuclear and Polynuclear Complexes with Molecular or Ionic Crystal Structures The purpose of this report is to draw attention to the remarkable versatility of the dimesylamides R3SnA [A = (MeSO2)2N; R = Me ( 1 a ) or Ph ( 1 b )] as precursors for pentacoordinate triorganyltin(IV) complexes belonging to four distinct structural types. Representative complexes were prepared by treating 1 a or 1 b in the appropriate molar ratios with unidentate thiourea or urea-type ligands or with the bidentate ligand [Ph2P(O)CH2]2 (DPPOE). The following compounds were characterized by X-ray analysis: [Me3Sn(A)(thiourea)] ( 2 a ; monoclinic, space group P21/n), [Ph3Sn(A)(tetramethylthiourea)] ( 2 b ; monoclinic, P21, two independent formula units), [Me3Sn(1-methylurea)2]+ · A ( 3 a ; monoclinic, P21/c), [Ph3Sn(1,1-dimethylurea)2]+ · A ( 3 c ; triclinic, P1), [{Ph3Sn(A)}2(μ-dppoe)] ( 4 ; triclinic, P1), [Ph3Sn(μ-dppoe)]nn+ · n A · n MeCN ( 5 ; monoclinic, P21/c). The lattices of 2 a , 2 b and 4 contain discrete uncharged formula units which are mononuclear for 2 a and 2 b or dinuclear for 4 , whereas 3 a , 3 c and 5 have ionic structures featuring mononuclear cations for 3 a and 3 c or an infinite linear-polymeric cation for 5 . In all the structures, the tin atoms adopt trigonal-bipyramidal geometries, the apical positions being occupied in 2 a and 2 b by the S atom of the thiourea and one O atom of A, in 3 a and 3 c by the O atoms of two urea-type ligands, in 4 by an O atom of the bridging DPPOE molecule and one O atom of A, and in 5 by two phosphoryl O atoms from different bridging DPPOE ligands. In the structures of 2 a , 3 a and 3 c , the (thio)urea NH functions are connected to A via intermolecular or interionic N–H … O and N–H … N hydrogen bonds. Crystals of [{Me3Sn(bipyH+ … A)}2(μ-bipy)]2+ · 2 A ( 6 ; monoclinic, C2/c) formed adventitiously in a reaction mixture containing 1 a and 4,4′-bipyridine. The rod-like supramolecular cation of 6 (length ca. 4 nm) is built up from two Me3Sn+ units bridged through bipy and unidentally coordinated by a monoprotonated bipy (= bipyH+), resulting in a trigonal-bipyramidal geometry around tin (N atoms apical); each of the terminal bipyH+ ligands forms an +N–H … N hydrogen bond with one A.  相似文献   
105.
The crystal structure of the title compound, C5H7N2+·C12H10NO4S2, consists of two independent cation–anion pairs, A and B. Within each pair, the H—N—C—N*—H grouping (N*—H is the pyridinium function) and one N—S—O moiety of the anion are linked by N*—H⃛N and N—H⃛O hydrogen bonds to form an antidromic ring motif of type R22(8). The remaining amino donors give rise to N—H⃛O hydrogen bonds, connecting the ion pairs into ABAB– chains. The structure testifies to the persistence of the R22(8) motif in question, which was previously detected as a highly robust supramolecular synthon in a series of onium di(methane­sulfonyl)­amidates. The structure is pseudosymmetric; the anion positions correspond to space group P21/n, but those of the cations do not.  相似文献   
106.
The prominent features in the molecular structure of the title compound (alternative name: 2‐diethyl­carbamoyl‐1,1,3,3‐tetraoxo‐1,3,2‐benzodi­thia­zole), C11H14N2O5S2, arise in the urea moiety S2N—C(O)—N′C2: the sum of the angles at N is 332.3 (1)°, the N—C(O)—N′C2 unit is planar, and distances N—C(O) = 1.494 (3) Å, N′—C(O) = 1.325 (2) Å and C—O = 1.215 (2) Å. The mol­ecules are associated via five C—H?O hydrogen bonds to form layers parallel to the yz plane. This compound and its di­methyl homologue, which were synthesized by treating the silver salt of o‐benzene­disulfon­imide with carbamoyl chlorides, are prone to rapid hydro­lysis at the weak N—C(O) bond. For both mol­ecules, the rotational barrier about the partial N′—C(O) double bond is ca 50 kJ mol?1 at 250 K (from dynamic 1H NMR experiments).  相似文献   
107.
Metal Salts of Benzene‐1,2‐di(sulfonyl)amine. 3. Crystal Structures of the Free Protonated Ligand HN(SO2)2C6H4 (= HZ) and the Lamellar Cesium Salt CsZ Benzene‐1,2‐di(sulfonyl)amine ( 1 ; HZ), known since 1921, is a very strong NH acid and readily reacts with aqueous CsCl to form crystalline CsZ ( 3 ). For both compounds, crystal structures were determined by X‐ray diffraction at –100 °C ( 1 : monoclinic, space group P21/n, Z = 4; 3 : orthorhombic, Cmcm, Z = 4). In 1 , the five‐membered 1,3,2‐dithiazole heterocycle possesses an envelope conformation, the N atom lying 29.4(2) pm outside the mean plane of the S–C–C–S moiety [S–N 167.06(15) and 167.53(15) pm, S–N–S 114.57(8)°]. In the crystal, HZ molecules are linked into chains by a conventional N–H…O hydrogen bond and further associated via four weak C–H…O bonds to form a three‐dimensional network. The conjugate Z ion in the layered structure of the salt 3 displays crystallographic C2v symmetry, leading to an ideally planar bicyclic framework [S–N 158.29(15) pm, S–N–S 116.53(17)°]. Each of the five electronegative atoms bridges two cations, Cs attaining a tenfold coordination by forming bonds to two (O,N,O)‐chelating and four κ1O‐monodentate ligands. The Cs–O/N interactions create a polar [CsN(SO2)2] lamella, which is lipophilically wrapped by parallel benzo rings protruding perpendicularly from its surfaces. In contrast to the previously reported lamellar metal di(arenesulfonyl)amides, the aromatic groups pertaining to adjacent layers of 3 are seen to be markedly interlocked.  相似文献   
108.
109.
Ichthyosan A and V are two highly elastoviscous glycan complexes present in the aqueus and vitreus [here aqueus and vitreus are used as nouns as was suggested by Balazs and Denlinger in The eye, vol 1A. Vegetative physiology and biochemistry, 3rd edn. Academic Press, New York, pp 533–589, 1984] of the fish eye. Ichthyosan A, with its high elastic properties, surrounds and stabilizes the lens of the eye. Ichthyosan V, within the collagen fibers, serves as a structure stabilizer of the gel vitreus. These two molecular complexes are non-covalent aggregates composed of hyaluronan, a chondroitin-proteoglycan (sulfate free), and a keratan-like molecule. The ratio of hyaluronan to chondroitin–proteoglycan varies in the two ichthyosans. Electrophoretic separation methods (both free and gel electrophoresis) demonstrate that the hyaluronan–proteoglycan aggregates move as one molecular entity. The average molecular weight of the ichthyosan varies from 5.2 to 13.0 million in various species. Aquatic mammals do not have ichthyosan in their eyes.  相似文献   
110.
We introduce a framework in which updating rules for the barrier parameter in primal-dual interior-point methods become dynamic. The original primal-dual system is augmented to incorporate explicitly an updating function. A Newton step for the augmented system gives a primal-dual Newton step and also a step in the barrier parameter. Based on local information and a line search, the decrease of the barrier parameter is automatically adjusted. We analyze local convergence properties, report numerical experiments on a standard collection of nonlinear problems and compare our results to a state-of-the-art interior-point implementation. In many instances, the adaptive algorithm reduces the number of iterations and of function evaluations. Its design guarantees a better fit between the magnitudes of the primal-dual residual and of the barrier parameter along the iterations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号