首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7003篇
  免费   324篇
  国内免费   60篇
化学   4851篇
晶体学   29篇
力学   161篇
数学   1162篇
物理学   1184篇
  2023年   43篇
  2022年   116篇
  2021年   208篇
  2020年   140篇
  2019年   150篇
  2018年   152篇
  2017年   119篇
  2016年   284篇
  2015年   256篇
  2014年   281篇
  2013年   466篇
  2012年   483篇
  2011年   571篇
  2010年   345篇
  2009年   283篇
  2008年   487篇
  2007年   443篇
  2006年   440篇
  2005年   375篇
  2004年   311篇
  2003年   236篇
  2002年   218篇
  2001年   87篇
  2000年   90篇
  1999年   52篇
  1998年   77篇
  1997年   65篇
  1996年   72篇
  1995年   39篇
  1994年   48篇
  1993年   41篇
  1992年   45篇
  1991年   39篇
  1990年   24篇
  1989年   17篇
  1988年   12篇
  1987年   14篇
  1986年   20篇
  1985年   26篇
  1984年   35篇
  1983年   19篇
  1982年   21篇
  1981年   23篇
  1980年   19篇
  1979年   15篇
  1978年   20篇
  1977年   16篇
  1976年   6篇
  1974年   5篇
  1973年   9篇
排序方式: 共有7387条查询结果,搜索用时 281 毫秒
151.
[structure: see text] The triterpenes 8,14-seco-oleana-8(26),13-dien-3beta-ol (1) and its acetyl derivative 2 were isolated from Stevia viscida and Stevia eupatoria, respectively. Their structures were elucidated by 2D NMR, including carbon-carbon connectivity experiments, and confirmed by X-ray diffraction analysis of ketone 3. The absolute configuration was determined by NMR analysis of the Mosher esters of 1. The biogenetic implications of the new substances are discussed.  相似文献   
152.
The structure of bis(1,10‐phenanthroline‐κ2N,N′)(thio­sulfato‐κ2O:S)­manganese(II) methanol solvate, [Mn(S2O3)(C12H8N2)2]·CH3OH, is made up of Mn2+ centers coordinated to two bidentate phenanthroline (phen) groups and an S,O‐chelating thio­sulfate anion, forming monomeric entities. The structure of catena‐poly­[[di­aqua(2,9‐di­methyl‐1,10‐phen­anthro­line‐κ2N,N′)­manganese(II)]‐μ‐thio­sulfato‐κ2O:S], [Mn(S2O3)(C14H12N2)(H2O)2]n, is polymeric, consisting of Mn(dmph)(H2O)2 units (dmph is 2,9‐di­methyl‐1,10‐phenanthroline) linked by thio­sulfate anions acting in an S,O‐chelating manner.  相似文献   
153.
In this work, a new physically adsorbed coating for capillary electrophoresis (CE) is presented. The coating is based on a N,N-dimethylacrylamide-ethylpyrrolidine methacrylate (DMA-EPyM) copolymer synthesized in our laboratory. The capillary coating is simple and easy to obtain as only requires flushing the capillary with a polymer aqueous solution for 2 min. It is shown that by using these coated capillaries the electrostatic adsorption of a group of basic proteins onto the capillary wall is significantly reduced allowing their analysis by CE. Moreover, the DMA-EPyM coating provides reproducible separations of the basic proteins with RSD values for migration times lower than 0.75% for the same day (n = 5) and lower than 3.90% for three different days (n = 15). Interestingly, the electrical charge of the coated capillary wall can be modulated by varying the pH of the running buffer which makes possible the analysis of basic and acidic proteins in the same capillary. The usefulness of this coating is further demonstrated via the reproducible separation of whey (i.e. acidic) proteins from raw milk. The coating protocol should be compatible with both CE in microchips and CE-MS of different types of proteins.  相似文献   
154.
Two new nickel nitrates, di­aqua­bis(3,4,7,8‐tetra­methyl‐1,10‐phenanthroline‐κ2N,N′)­nickel(II) dinitrate methanol solvate, [Ni(C16H16N2)2(H2O)2](NO3)2·CH4O, (I), and tri­aqua­[2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine‐κ3N1,N2,N6]nickel(II) di­ni­trate trihydrate, [Ni(C18H12N6)(H2O)3](NO3)2·3H2O, (II), are reported. In both structures, the cation is octahedrally coordinated, to two bidentate 3,4,7,8‐tetra­methyl‐1,10‐phenanthroline (tmp) and two water mol­ecules in (I), and to one tridentate 2,4,6‐tris(2‐pyridyl)‐1,3,5‐triazine (tpt) and three water mol­ecules in (II). Both structures are stabilized by extensive hydrogen‐bonding interactions.  相似文献   
155.
The Pt-Ir microelectrode modified through one step electropolymerization is proposed for the isocitrate amperometric biosensor construction. The enzyme (isocitrate dehydrogenase-ICDH), coenzyme (NADP(+)) and mediator (Meldola's Blue) were immobilized onto the microelectrode surface in one step from a PIPES buffer solution containing pyrrole. The optimized experimental conditions were 25 cycles of cyclic voltammetric in a solution containing 3.58 10(-5) mol l(-1) of mediator, 3.51 10(-4) mol l(-1) of coenzyme and 2.68 U ml(-1) of enzyme. In contrast to the biosensor for isocitrate reported in literature, just one enzyme was immobilized and no coenzyme addition in the solution of analysis was necessary. Catalytic currents were proportional to the isocitrate concentration between 7.7 10(-6) and 1.04 10(-4) mol l(-1), showing good repeatability. The detection limit of the proposed biosensor was 3.50 10(-6) mol l(-1), the response time was lower than 20 s, the lifetime was about 30 determinations and no significant interference of sugars and citric acid was verified. Orange juice samples were analysed by both methodology biosensor and spectrophotometric commercial kit, and the obtained results presented a good correlation. The data demonstrated that the developed biosensor is suitable for isocitrate determination in orange juice without matrix interferences.  相似文献   
156.
2',7'-Difluorofluorescein (Oregon Green 488, OG488) is a novel fluorescein dye derivative which presents important advantages for improving the fluorimetric applications in the biomedical and biochemical sciences. In aqueous solution it displays four prototropic forms, namely cation (C), neutral (N), monoanion (M), and dianion (D). In previous works, we found (J. Phys. Chem. A 2005, 109, 734-747, 2840-2846) that OG488 undergoes excited-state proton transfer reactions, which may affect the results from applications using this dye. We established that the excited-state proton transfer (ESPT) reactions between neutral, monoanionic, and dianionic forms of OG488 are promoted by acetate buffer, and we characterized the ground and excited species involved. We also solved the kinetics of the prototropic reactions using global compartmental analysis. In the present paper, we extend our study on the ESPT reactions of OG488 to acidic media, in which only the three prototropic species cation, neutral, and monoanion coexist. We have solved the kinetics of the three-state ESPT reaction by means of global three-compartmental analysis of a fluorescence decay surface in moderately acidic media (pH between 1.1 and 3.0), recovering the kinetic and spectral parameters of this three-state system. This system is one of the most complex solved to date, due to the strong overlap of the absorption and emission spectra of the neutral and monoanionic forms of OG488. We also found that the cation behaves as "super" photoacid, showing a very high deprotonation rate constant (1.04 x 10(11) s(-1)) and an enhanced acidity. Therefore, we also carried out experiments at very high perchloric acid concentrations, dealing with some other effects which become noteworthy at these [H(+)]. The presence of xanthylium cation quenching due to "free" water molecules, and the reduction in the amount of water clusters acting as proton acceptors, are processes which alter notably the time course of the excited-species in this high [H(+)] range.  相似文献   
157.
Polymer-silica nanocomposites based on poly(2-hydroxyethyl acrylate) (PHEA) have been prepared by the simultaneous polymerization of the organic and the silica phases in a sol-gel process with the silica precursor tetraethyl orthosilicate (TEOS). The structure of this system is investigated using atomic force microscopy (AFM) in the tapping mode and in nanoindentation experiments. The structure of the PHEA/silica hybrids strongly depends on the ratio of both components in the system. For silica weight fractions lower than 0.15, the system consists of aggregated silica particles dispersed in the organic matrix; above that concentration of silica the structure is co-continuous with that of the organic matrix, similarly to two interpenetrated networks.  相似文献   
158.
A rapid, simple and rugged procedure without requiring any prior sample treatment was developed for the determination of acetylsalicylic acid (ASA) in tablets formulations by solid-phase fluorescence spectroscopy. The method was carried out on powdered samples, consisting of an active substance dispersed in lactose, maize starch, talc and magnesium stearate. Previous knowledge of the sample bulk composition is needed for proper application of the method. Wavelengths for maximum excitation and emission were 288 and 318 nm, respectively, and the fluorescence intensity was linear with ASA concentration within the 50-170 mg g−1 range. Detection and quantification limits were 2.2 and 7.3 mg g−1, and the analytical frequency was 200 h−1. For a typical sample, the relative standard deviation of results was estimated as 2.3% (n = 10). Accuracy was assessed by comparing the analytical results obtained with the proposed method with those related to a reference method recommended by British Pharmacopoeia: no differences between the methods were found at the 95% confidence level.  相似文献   
159.
In the present work, scandium was determined in sediment slurry samples (from three different rivers) by electrothermal atomic absorption spectrometry (ETAAS). Slurries were prepared by weighting 100 mg of dry sediment samples (≤53 μm particle sizes) and adding 6 ml of HCl:HNO3:HF (3:1:2, v/v). Accurate results were only possible due to the synergetic effect between Rh as permanent chemical modifier and acetylacetone (Acac) as complexing agent. The same platform was used for 400 heating cycles. The performance of the chemical modification was evaluated by using scanning electron microscopy (SEM), synchrotron radiation X-ray fluorescence (SRXRF) and some figures of merit (precision and detectability). The best analytical conditions were attained using 1500 and 2550 °C as pyrolysis and atomization temperatures. The scandium content in the liquid phase of the slurries ranged from 61 to 73%, thus indicating, in this study, that both liquid and solid phases play an important role in slurry analyses. An amount of 5.0–20.0 μg l−1 Sc linear range as well as LOD and LOQ of 0.19 and 0.62 μg l−1, respectively, were obtained under these conditions. The accuracy was checked by using microwave-assisted decomposition, and the results compared to those obtained with the proposed methodology (slurry analysis). By checking both sets of the results, there is no statistical difference at the 95% confidence levels.  相似文献   
160.
The process by which DNA repair enzymes recognize and selectively excise damaged bases in duplex DNA is fundamental to our mechanistic understanding of these critical biological reactions. 8-Oxoguanine (8-oxoG) is the most common form of oxidative DNA damage; unrepaired, this lesion generates a G:C-->T:A mutation. Central to the recognition and repair of DNA damage is base extrusion, a process in which the damaged base lesion or, in some cases, its partner disengages from the helix and is bound to the enzyme's active site where base excision takes place. The conformation adopted by 8-oxoG in duplex DNA is affected by the base positioned opposite this lesion; conformational changes may also take place when the damaged base binds to its cognate repair enzyme. We performed unrestrained molecular dynamics simulations for several 13-mer DNA duplexes. Oligomers containing G:C and 8oxoG:C pairs adopted Watson-Crick geometries in stable B-form duplexes; 8oxoG showed increased local and global flexibility and a reduced barrier to base extrusion. Duplexes containing the G:A mismatch showed much larger structural fluctuations and failed to adopt a well-defined structure. For the 8oxoG:A mismatch that is recognized by the DNA glycosylase MutY, the damaged nucleoside underwent spontaneous and reproducible anti-->syn transitions. The syn conformation is thermodynamically preferred. Steric hindrance and unfavorable electrostatics associated with the 8oxoG O8 atom in the anti conformation were the major driving forces for this transition. Transition events follow two qualitatively different pathways. The overall anti-->syn transition rate and relative probability of the two transition paths were dependent on local sequence context. These simulations indicate that both the dynamic and equilibrium behavior of the duplex change as a result of oxidation; these differences may provide valuable new insight into the selective action of enzymes on damaged DNA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号